




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆云南省楚雄市數(shù)學八下期末調(diào)研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列由左到右的變形,屬于因式分解的是()A. B.C. D.2.下列說法中正確的是()A.若,則 B.是實數(shù),且,則C.有意義時, D.0.1的平方根是3.下列函數(shù)關(guān)系式:①y=-2x,②y=?,③y=-2x2,④y=2,⑤y=2x-1.其中是一次函數(shù)的是()A.①⑤ B.①④⑤ C.②⑤ D.②④⑤4.如圖,在任意四邊形ABCD中,M,N,P,Q分別是AB,BC,CD,DA上的點,對于四邊形MNPQ的形狀,以下結(jié)論中,錯誤的是A.當M,N,P,Q是各邊中點,四邊MNPQ一定為平行四邊形B.當M,N,P,Q是各邊中點,且時,四邊形MNPQ為正方形C.當M,N、P,Q是各邊中點,且時,四邊形MNPQ為菱形D.當M,N、P、Q是各邊中點,且時,四邊形MNPQ為矩形5.點P(-2,3)到x軸的距離是()A.2 B.3 C. D.56.在平行四邊形ABCD中,若∠B=135°,則∠D=()A.45° B.55° C.135° D.145°7.如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰直角△ABC,使∠BAC=90°,設(shè)點B的橫坐標為x,則點C的縱坐標y與x的函數(shù)解析式是()A.y=x B.y=1﹣x C.y=x+1 D.y=x﹣18.在四邊形ABCD中,對角線AC與BD交于點O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD9.如圖,分別是的邊上的點,將四邊形沿翻折,得到交于點則的周長為()A. B. C. D.10.寧寧所在的班級有42人,某次考試他的成績是80分,若全班同學的平均分是78分,判斷寧寧成績是否在班級屬于中等偏上,還需要了解班級成績的()A.中位數(shù) B.眾數(shù) C.加權(quán)平均數(shù) D.方差11.在平面直角坐標系中,點(1,-5)所在象限是()A.第四象限B.第三象限C.第二象限D(zhuǎn).第一象限12.實數(shù)k、b滿足kb﹥0,不等式kx<b的解集是那么函數(shù)y=kx+b的圖象可能是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,中,,,的垂直平分線分別交、于、,若,則________.14.已知一組數(shù)據(jù):0,2,x,4,5,這組數(shù)據(jù)的眾數(shù)是4,那么這組數(shù)據(jù)的平均數(shù)是_____.15.如圖所示,矩形紙片ABCD中,AB=4cm,BC=8cm,現(xiàn)將其沿EF對折,使得點C與點A重合,則AF的長為_____.16.平行四邊形ABCD中,∠ABC的平分線將AD邊分成的兩部分的長分別為2和3,則平行四邊形ABCD的周長是_____.17.已知Rt△ABC中,AB=3,AC=4,則BC的長為__________.18.如圖所示,△ABC為等邊三角形,D為AB的中點,高AH=10cm,P為AH上一動點,則PD+PB的最小值為_______cm.三、解答題(共78分)19.(8分)墊球是排球隊常規(guī)訓練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.(1)寫出運動員甲測試成績的眾數(shù)和中位數(shù);(2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?為什么?(參考數(shù)據(jù):三人成績的方差分別為S甲2=0.8、S乙2=0.4、S丙2=0.8)20.(8分)如圖,在等腰中,,D為底邊BC延長線上任意一點,過點D作,與AC延長線交于點E.則的形狀是______;若在AC上截取,連接FB、FD,判斷FB、FD的數(shù)量關(guān)系,并給出證明.21.(8分)如圖,已知邊長為6的菱形ABCD中,∠ABC=60°,點E,F(xiàn)分別為AB,AD邊上的動點,滿足,連接EF交AC于點G,CE、CF分別交BD于點M,N,給出下列結(jié)論:①△CEF是等邊三角形;②∠DFC=∠EGC;③若BE=3,則BM=MN=DN;④;⑤△ECF面積的最小值為.其中所有正確結(jié)論的序號是______22.(10分)某中學舉辦“校園好聲音”朗誦大賽,根據(jù)初賽成績,七年級和八年級各選出5名選手組成七年級代表隊和八年級代表隊參加學校決賽兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示:(1)根據(jù)所給信息填寫表格;平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)七年級
85
八年級85
100(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;(3)若七年級代表隊決賽成績的方差為70,計算八年級代表隊決賽成績的方差,并判斷哪個代表隊的選手成績較為穩(wěn)定.23.(10分)有這樣一個問題:探究函數(shù)的圖象與性質(zhì),小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究,下面是小東的探究過程,請補充完整:(1)下表是與的幾組對應值,則.…………(2)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;(3)當時,隨的增大而;當時,的最小值為.24.(10分)如圖,矩形ABCD中,AB>AD,把矩形沿對角線AC所在直線折疊,使點B落在點E處,AE交CD于點F,連接DE,求證:∠DAE=∠ECD.25.(12分)在?ABCD中,E、F是DB上的兩點,且AE∥CF,若∠AEB=115°,∠ADB=35°26.如圖,在四邊形中,點分別是對角線上任意兩點,且滿足,連接,若.求證:(1)(2)四邊形是平行四邊形.
參考答案一、選擇題(每題4分,共48分)1、C【解析】
根據(jù)因式分解的意義,可得答案.【詳解】A.是整式的乘法,故A錯誤;B.沒把一個多項式轉(zhuǎn)化成幾個整式積的形式,故B錯誤;C.把一個多項式轉(zhuǎn)化成幾個整式積的形式,故C正確;D沒把一個多項式轉(zhuǎn)化成幾個整式積的形式,故D錯誤.故答案選:C.【點睛】本題考查的知識點是因式分解的意義,解題的關(guān)鍵是熟練的掌握因式分解的意義.2、C【解析】
根據(jù)算術(shù)平方根的意義,可知=|a|>0,故A不正確;根據(jù)一個數(shù)的平方為非負數(shù),可知a≥0,故不正確;根據(jù)二次根式的有意義的條件可知-x≥0,求得x≤0,故正確;根據(jù)一個數(shù)的平方等于a,那么這個數(shù)就是a的平方根,故不正確.故選C3、A【解析】
根據(jù)一次函數(shù)的定義條件進行逐一分析即可.【詳解】解:①y=-2x是一次函數(shù);②y=?自變量次數(shù)不為1,故不是一次函數(shù);③y=-2x2自變量次數(shù)不為1,故不是一次函數(shù);④y=2是常函數(shù);⑤y=2x-1是一次函數(shù).所以一次函數(shù)是①⑤.故選:A.【點睛】本題主要考查了一次函數(shù)的定義,一次函數(shù)y=kx+b的定義條件是:k、b為常數(shù),k≠0,自變量次數(shù)為1.4、B【解析】
連接AC、BD,根據(jù)三角形中位線定理得到,,,,根據(jù)平行四邊形、矩形、菱形、正方形的判定定理判斷即可.【詳解】解:連接AC、BD交于點O,,N,P,Q是各邊中點,,,,,,,四邊MNPQ一定為平行四邊形,A說法正確,不符合題意;時,四邊形MNPQ不一定為正方形,B說法錯誤,符合題意;時,,四邊形MNPQ為菱形,C說法正確,不符合題意;時,,四邊形MNPQ為矩形,D說法正確,不符合題意.故選B.【點睛】本題考查的是中點四邊形,掌握平行四邊形、矩形、菱形、正方形的判定定理、三角形中位線定理是解題的關(guān)鍵.5、B【解析】
直接利用點的坐標性質(zhì)得出答案.【詳解】點P(-2,1)到x軸的距離是:1.故選B.【點睛】此題主要考查了點的坐標,正確把握點的坐標性質(zhì)是解題關(guān)鍵.6、C【解析】
根據(jù)平行四邊形的性質(zhì)解答即可.【詳解】解:∵在平行四邊形ABCD中,∠B=135°,∴∠D=∠B=135°,
故選:C.【點睛】本題考查了平行四邊形的性質(zhì)的知識,解答本題的關(guān)鍵是根據(jù)平行四邊形的性質(zhì)得出∠D=∠B.7、C【解析】
過點C作CE⊥y軸于點E,只要證明△CEA≌△AOB(AAS),即可解決問題;【詳解】解:過點C作CE⊥y軸于點E.∵∠CEA=∠CAB=∠AOB=90°,∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠EAC=∠ABO,∵AC=AB,∴△CEA≌△AOB(AAS),∴EA=OB=x,CE=OA=1,∵C的縱坐標為y,OE=OA+AD=1+x,∴y=x+1.故選:C.【點睛】本題考查全等三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.8、C【解析】
根據(jù)平行四邊形的判定方法得出A、B、D正確,C不正確;即可得出結(jié)論.【詳解】解:A.∵OA=OC,OB=OD∴四邊形ABCD是平行四邊形(對角線互相平分的四邊形是平行四邊形),∴A正確,故本選項不符合要求;B.∵AB∥CD∴∠DAO=∠BCO,在△DAO與△BCO中,∴△DAO≌△BCO(ASA),∴OD=OB,
又OA=OC,
∴四邊形ABCD是平行四邊形,∴B正確,故本選項不符合要求;C.由AB=DC,OA=OC,∴無法得出四邊形ABCD是平行四邊形.故不能能判定這個四邊形是平行四邊形,符合題意;∵AB∥DC,D.∵∠ADB=∠CBD,∠BAD=∠BCD∴四邊形ABCD是平行四邊形(兩組對角分別相等的四邊形是平行四邊形),∴D正確,故本選項不符合要求;故選C.【點睛】本題考查平行四邊形的判定方法;熟練掌握平行四邊形的判定方法,并能進行推理論證是解決問題的關(guān)鍵.9、C【解析】
根據(jù)平行四邊形的性質(zhì)得到AD∥BC,由平行線的性質(zhì)得到∠AEG=∠EGF,根據(jù)折疊的性質(zhì)得到∠GEF=∠DEF=60°,推出△EGF是等邊三角形,于是得到結(jié)論.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEG=∠EGF,∵將四邊形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等邊三角形,∴EG=FG=EF=4,∴△GEF的周長=4×3=12,故選:C.【點睛】本題考查了翻折變換的性質(zhì)、平行四邊形的性質(zhì)、等邊三角形的判定與性質(zhì)等知識;熟練掌握翻折變換的性質(zhì)是解決問題的關(guān)鍵.10、A【解析】
根據(jù)中位數(shù)、眾數(shù),加權(quán)平均數(shù)和方差的定義逐一判斷可得出答案?!驹斀狻拷猓篈.由中位數(shù)的定義可知,寧寧成績與中位數(shù)比較可得出他的成績是否在班級中等偏上,故本選項正確;B.由眾數(shù)的定義可知,眾數(shù)反映同一個成績?nèi)藬?shù)最多的情況,故本選項錯誤;C.由加權(quán)平均數(shù)的性質(zhì)可知,平均數(shù)會受極端值的影響,故本選項錯誤;D.由方差的定義可知,方差反映的是數(shù)據(jù)的穩(wěn)定情況,故本選項錯誤。【點睛】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).11、A【解析】分析:根據(jù)象限內(nèi)點的坐標特征即可解答.詳解:點(1,-5)橫坐標為正,縱坐標為負,故該點在第四象限.點睛:本題主要考查了象限內(nèi)點的坐標特征,牢記點的坐標特征是解題的關(guān)鍵.12、B【解析】分析:先根據(jù)不等式kx<b的解集是x>判斷出k的符號,再根據(jù)k、b滿足kb﹥0得到b的符號,最后根據(jù)一次函數(shù)圖象的性質(zhì)即可解答.詳解:∵不等式kx<b的解集是x>,∴k<0,∵kb>0,∴b<0,∴函數(shù)y=kx+b的圖象過二、三、四象限.故選B.點睛:一次函數(shù)y=kx+b的圖象有四種情況:①當k>0,b>0,函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限;②當k>0,b<0,函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;③當k<0,b>0時,函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;④當k<0,b<0時,函數(shù)y=kx+b的圖象經(jīng)過第二、三、四象限.二、填空題(每題4分,共24分)13、【解析】
先根據(jù)垂直平分線的性質(zhì),判定AM=BM,再求出∠B=30°,∠CAM=90°,根據(jù)直角三角形中30度的角對的直角邊是斜邊的一半,得出BM=AM=CA,即CM=2BM,進而可求出BC的長.【詳解】如圖所示,連接AM,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∵MN⊥AB,∴BM=2MN=2,∵MN是AB的垂直平分線,∴BM=AM=2,∴∠BAM=∠B=30°,∴∠MAC=90°,∴CM=2AM=4,∴BC=2+4=1.故答案為1.【點睛】此題主要考查了等腰三角形的性質(zhì),含30°角的直角三角形的性質(zhì),以及線段的垂直平分線的性質(zhì)等幾何知識.線段的垂直平分線上的點到線段的兩個端點的距離相等.14、3【解析】
先根據(jù)眾數(shù)的定義求出的值,再根據(jù)平均數(shù)的計算公式列式計算即可.【詳解】解:,2,,4,5的眾數(shù)是4,,這組數(shù)據(jù)的平均數(shù)是;故答案為:3;【點睛】此題考查了眾數(shù)和平均數(shù),根據(jù)眾數(shù)的定義求出的值是本題的關(guān)鍵,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).15、5cm【解析】
設(shè)AF=xcm,則DF=(8﹣x)cm,由折疊的性質(zhì)可得DF=D′F,在Rt△AD′F中,由勾股定理可得x2=42+(8﹣x)2,解方程求的x的值,即可得AF的長.【詳解】設(shè)AF=xcm,則DF=(8﹣x)cm,∵矩形紙片ABCD中,AB=4cm,BC=8cm,現(xiàn)將其沿EF對折,使得點C與點A重合,∴DF=D′F,在Rt△AD′F中,∵AF2=AD′2+D′F2,∴x2=42+(8﹣x)2,解得:x=5(cm).故答案為:5cm【點睛】本題考查了矩形的折疊問題,利用勾股定理列出方程x2=42+(8﹣x)2是解決問題的關(guān)鍵.16、14或1【解析】由平行四邊形ABCD推出∠AEB=∠CBE,由已知得到∠ABE=∠CBE,推出AB=AE,分兩種情況(1)當AE=2時,求出AB的長;(2)當AE=3時,求出AB的長,進一步求出平行四邊形的周長.
解:∵四邊形ABCD是平行四邊形,
∴AD=BC,AB=CD,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
∵∠ABC的平分線將AD邊分成的兩部分的長分別為2和3兩部分,當AE=2時,則平行四邊形ABCD的周長是14;
(2)當AE=3時,則平行四邊形ABCD的周長是1;
故答案為14或1.
“點睛”此題考查了平行四邊形的性質(zhì):平行四邊形的對邊相等且平行.注意當有平行線和角平分線出現(xiàn)時,會有等腰三角形出現(xiàn),解題時還要注意分類討論思想的應用.
17、或1.【解析】
根據(jù)勾股定理來進行解答即可,本題需要分兩種情況進行計算,即BC為斜邊和BC為直角邊.【詳解】根據(jù)勾股定理可得:AB=或AB=,故答案為1或.【點睛】本題主要考查的是利用勾股定理求邊長的問題,屬于基礎(chǔ)問題.在利用勾股定理時一定要注意所求的邊為直角邊還是斜邊.18、10【解析】
連接PC,根據(jù)等邊三角形三線合一的性質(zhì),可得PC=BP,PD+PB要取最小值,應使D、P、C三點一線.【詳解】連接PC,∵△ABC為等邊三角形,D為AB的中點,∴PD+PB的最小值為:PD+PB=PC+PD=CD=AH=10cm.故答案為:10【點睛】考查軸對稱-最短路線問題,等邊三角形的性質(zhì),找出點P的位置是解題的關(guān)鍵.三、解答題(共78分)19、(1)眾數(shù)是7,中位數(shù)是7;(2)乙,理由見解析【解析】
(1)觀察表格可知甲運動員測試成績的眾數(shù)和中位數(shù)都是7分;(2)易知=7,=7,=6.3,方差越小,成績越穩(wěn)定.根據(jù)方差的意義不難判斷.【詳解】(1)甲運動員測試成績中7出現(xiàn)最多,故甲的眾數(shù)為7;甲成績重新排列為:5、6、7、7、7、7、7、8、8、8,∴甲的中位數(shù)為=7,∴甲測試成績的眾數(shù)和中位數(shù)都是7分;(2)=×(7+6+8+7+7+5+8+7+8+7)=7,=×(6+6+7+7+7+7+7+7+8+8)=7,=×(5×2+6×4+7×3+8×1)=6.3,∵=,S甲2>S乙2,∴選乙運動員更合適.【點睛】本題考查列表法、條形圖、折線圖、中位數(shù)、平均數(shù)、方差等知識,熟練掌握基本概念是解題的關(guān)鍵.20、(1)等腰三角形;.【解析】
根據(jù)等腰三角形的性質(zhì)得到,求得,根據(jù)全等三角形的性質(zhì)得到,于是得到結(jié)論;根據(jù)平行線的性質(zhì)得到,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論【詳解】是等腰三角形,理由:,,,,,,是等腰三角形;故答案為:等腰三角形;,理由:,,,,,即,在與中,≌,.【點睛】本題考查了等腰三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),平行線的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.21、①②③⑤【解析】
由“SAS”可證△BEC≌△AFC,可得CF=CE,∠BCE=∠ACF,可證△EFC是等邊三角形,由三角形內(nèi)角和定理可證∠DFC=∠EGC;由等邊三角形的性質(zhì)和菱形的性質(zhì)可求MN=DN=BM=;由勾股定理即可求解EF2=BE2+DF2不成立;由等邊三角形的性質(zhì)可得△ECF面積的EC2,則當EC⊥AB時,△ECF的最小值為.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC=CD=AD=6,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等邊三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等邊三角形,故①正確;∵∠ECF=∠ACD=60°,∴∠ECG=∠FCD,∵∠FEC=∠ADC=60°,∴∠DFC=∠EGC,故②正確;若BE=3,菱形ABCD的邊長為6,∴點E為AB中點,點F為AD中點,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,∴AO=AB=3,BO=AO=,∴BD=,∵△ABC是等邊三角形,BE=AE=3,∴CE⊥AB,且∠ABO=30°,∴BE=EM=3,BM=2EM,∴BM=,同理可得DN=,∴MN=BD?BM?DN=,∴BM=MN=DN,故③正確;∵△BEC≌△AFC,∴AF=BE,同理△ACE≌△DCF,∴AE=DF,∵∠BAD≠90°,∴EF2=AE2+AF2不成立,∴EF2=BE2+DF2不成立,故④錯誤,∵△ECF是等邊三角形,∴△ECF面積的EC2,∴當EC⊥AB時,△ECF面積有最小值,此時,EC=,△ECF面積的最小值為,故⑤正確;故答案為:①②③⑤.【點睛】本題是四邊形綜合題,考查菱形的性質(zhì),全等三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理等知識,熟練掌握性質(zhì)定理是解題的關(guān)鍵.22、(1)填表見解析;(2)七年級代表隊成績好些;(3)七年級代表隊選手成績較為穩(wěn)定.【解析】
(1)根據(jù)平均數(shù)、眾數(shù)和中位數(shù)的定義分別進行解答即可;(2)根據(jù)表格中的數(shù)據(jù),可以結(jié)合兩個年級成績的平均數(shù)和中位數(shù),說明哪個隊的決賽成績較好;(3)根據(jù)方差公式先求出八年級的方差,再根據(jù)方差的意義即可得出答案.【詳解】(1)八年級的平均成績是:(75+80+85+85+100)÷5=85(分);85出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是85分;把八年級的成績從小到大排列,則中位數(shù)是80分;填表如下:平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)初二858585初三8580100(2)七年級代表隊成績好些.∵兩個隊的平均數(shù)都相同,七年級代表隊中位數(shù)高,∴七年級代表隊成績好些.(3)S八年級2=[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160;∵S七年級2<S八年級2,∴七年級代表隊選手成績較為穩(wěn)定.【點睛】本題考查了方差:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.也考查了中位數(shù)和眾數(shù).23、(1);(2)詳見解析;(3)增大;【解析】
(1)把x=代入函數(shù)解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 裝載機核銷協(xié)議書
- 電磁屏蔽PET樹脂行業(yè)跨境出海項目商業(yè)計劃書
- 金融社交交易社區(qū)企業(yè)制定與實施新質(zhì)生產(chǎn)力項目商業(yè)計劃書
- 高端珠寶個性化刻字服務行業(yè)跨境出海項目商業(yè)計劃書
- 極端天氣災害保險行業(yè)深度調(diào)研及發(fā)展項目商業(yè)計劃書
- 納米陶瓷涂層行業(yè)深度調(diào)研及發(fā)展項目商業(yè)計劃書
- 廣州扣繳稅協(xié)議書
- 自卸車安全協(xié)議書
- 生物傳感器在智能農(nóng)業(yè)中的應用行業(yè)深度調(diào)研及發(fā)展項目商業(yè)計劃書
- 湖南省名校聯(lián)考聯(lián)合體2022-2023學年高一下學期入學考試數(shù)學(原卷版)
- 軟著設(shè)計說明書
- 毛澤東詩詞賞析
- 申請銀行減免利息的申請書
- 維修協(xié)議勞務合同
- 文明考風 誠信考試
- 《工程建設(shè)標準強制性條文》-20220326155703
- 價值型銷售(技能篇)
- 2024年浙江省單獨考試招生文化課考試數(shù)學試卷真題(含答案詳解)
- HSE管理體系與保證措施
- 廣東省廣州大學附中2021-2022年初二12月大聯(lián)盟物理在線考試題
- 醫(yī)保政策培訓知識普及課件
評論
0/150
提交評論