婁底幼兒師范高等??茖W(xué)?!洞髷?shù)據(jù)實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
婁底幼兒師范高等??茖W(xué)?!洞髷?shù)據(jù)實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
婁底幼兒師范高等??茖W(xué)?!洞髷?shù)據(jù)實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
婁底幼兒師范高等??茖W(xué)?!洞髷?shù)據(jù)實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
婁底幼兒師范高等??茖W(xué)?!洞髷?shù)據(jù)實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)婁底幼兒師范高等??茖W(xué)校

《大數(shù)據(jù)實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)要對(duì)一個(gè)大型社交網(wǎng)絡(luò)的用戶關(guān)系數(shù)據(jù)進(jìn)行分析,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu)。以下哪種算法可能最適合?()A.PageRankB.Dijkstra算法C.層次聚類算法D.最短路徑算法2、在大數(shù)據(jù)的數(shù)據(jù)預(yù)處理中,數(shù)據(jù)標(biāo)準(zhǔn)化是常見的操作。假設(shè)我們有一個(gè)包含不同量級(jí)特征的數(shù)據(jù)集,需要進(jìn)行標(biāo)準(zhǔn)化處理。以下關(guān)于數(shù)據(jù)標(biāo)準(zhǔn)化的目的,哪一項(xiàng)是不正確的?()A.使不同特征具有相同的量級(jí),便于模型訓(xùn)練B.消除特征之間的量綱差異,提高模型的準(zhǔn)確性C.增加數(shù)據(jù)的方差,突出數(shù)據(jù)的差異D.使得不同特征對(duì)模型的影響具有可比性3、在大數(shù)據(jù)處理中,數(shù)據(jù)清洗是一個(gè)重要的環(huán)節(jié),以下關(guān)于數(shù)據(jù)清洗的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)清洗用于去除數(shù)據(jù)中的噪聲和錯(cuò)誤數(shù)據(jù)B.數(shù)據(jù)清洗可以提高數(shù)據(jù)的質(zhì)量和可用性C.數(shù)據(jù)清洗只需要對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單的過(guò)濾和篩選D.數(shù)據(jù)清洗需要根據(jù)具體的業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn)進(jìn)行定制化處理4、在進(jìn)行大數(shù)據(jù)分析時(shí),經(jīng)常需要對(duì)數(shù)據(jù)進(jìn)行采樣。以下關(guān)于數(shù)據(jù)采樣的描述,正確的是?()A.隨機(jī)采樣可以保證樣本的代表性B.分層采樣適用于數(shù)據(jù)分布均勻的情況C.采樣會(huì)導(dǎo)致數(shù)據(jù)信息的丟失,應(yīng)盡量避免D.系統(tǒng)采樣比隨機(jī)采樣更準(zhǔn)確5、數(shù)據(jù)清洗是大數(shù)據(jù)處理中的重要環(huán)節(jié),其目的是去除噪聲和糾正數(shù)據(jù)中的錯(cuò)誤。以下關(guān)于數(shù)據(jù)清洗的描述,不準(zhǔn)確的是()A.重復(fù)數(shù)據(jù)刪除可以去除數(shù)據(jù)集中的重復(fù)記錄B.缺失值處理通常采用刪除含有缺失值的記錄或者填充缺失值的方法C.異常值檢測(cè)可以通過(guò)統(tǒng)計(jì)方法或者機(jī)器學(xué)習(xí)算法來(lái)實(shí)現(xiàn)D.數(shù)據(jù)清洗只需要在數(shù)據(jù)采集階段進(jìn)行一次,后續(xù)無(wú)需再次處理6、在大數(shù)據(jù)項(xiàng)目實(shí)施過(guò)程中,數(shù)據(jù)質(zhì)量是一個(gè)關(guān)鍵問(wèn)題。假設(shè)一個(gè)數(shù)據(jù)集存在大量的缺失值、錯(cuò)誤值和重復(fù)數(shù)據(jù)。以下哪種方法可以有效地提高數(shù)據(jù)質(zhì)量?()A.數(shù)據(jù)清洗和預(yù)處理B.數(shù)據(jù)壓縮C.數(shù)據(jù)加密D.數(shù)據(jù)備份7、大數(shù)據(jù)的應(yīng)用不僅局限于企業(yè),也在科研領(lǐng)域發(fā)揮著重要作用。假設(shè)一個(gè)天文學(xué)研究項(xiàng)目,需要分析大量的天體觀測(cè)數(shù)據(jù)。以下哪種大數(shù)據(jù)技術(shù)最能幫助天文學(xué)家發(fā)現(xiàn)新的天體現(xiàn)象和規(guī)律?()A.分布式存儲(chǔ)和計(jì)算B.數(shù)據(jù)可視化C.機(jī)器學(xué)習(xí)算法D.以上技術(shù)結(jié)合使用8、在大數(shù)據(jù)應(yīng)用中,推薦系統(tǒng)是常見的一種應(yīng)用。假設(shè)一個(gè)在線視頻平臺(tái)需要為用戶推薦個(gè)性化的視頻內(nèi)容。以下哪種技術(shù)或方法通常用于構(gòu)建推薦系統(tǒng)?()A.協(xié)同過(guò)濾B.分類算法C.回歸分析D.決策樹9、在選擇大數(shù)據(jù)存儲(chǔ)方案時(shí),需要考慮諸多因素。假設(shè)一個(gè)企業(yè)需要存儲(chǔ)大量的半結(jié)構(gòu)化數(shù)據(jù),并且要求能夠快速查詢和更新數(shù)據(jù),以下哪種存儲(chǔ)方案可能不太合適?()A.HBaseB.MongoDBC.MySQLD.Cassandra10、對(duì)于一個(gè)需要進(jìn)行實(shí)時(shí)數(shù)據(jù)分析和可視化的大數(shù)據(jù)應(yīng)用,以下哪種技術(shù)組合通常是最佳選擇?()A.Spark+Kafka+FlinkB.Hadoop+Hive+MySQLC.Spark+HBase+RedisD.Kafka+MongoDB+TensorFlow11、在大數(shù)據(jù)項(xiàng)目中,數(shù)據(jù)預(yù)處理通常包括數(shù)據(jù)清洗、轉(zhuǎn)換和集成等步驟。如果數(shù)據(jù)來(lái)自多個(gè)不同的數(shù)據(jù)源,且數(shù)據(jù)格式不一致,首先需要進(jìn)行的操作是?()A.數(shù)據(jù)清洗B.數(shù)據(jù)轉(zhuǎn)換C.數(shù)據(jù)集成D.數(shù)據(jù)采樣12、在處理大數(shù)據(jù)時(shí),常常需要使用分布式計(jì)算框架來(lái)提高計(jì)算效率。假設(shè)有一個(gè)計(jì)算任務(wù)需要對(duì)數(shù)十億條數(shù)據(jù)進(jìn)行復(fù)雜的計(jì)算,以下哪種分布式計(jì)算框架在處理這種大規(guī)模數(shù)據(jù)計(jì)算時(shí)具有優(yōu)勢(shì)?()A.MPI(MessagePassingInterface)B.OpenMPC.CUDA(ComputeUnifiedDeviceArchitecture)D.Alloftheabove(以上皆是)13、當(dāng)處理大數(shù)據(jù)中的關(guān)系型數(shù)據(jù)時(shí),需要選擇合適的數(shù)據(jù)庫(kù)管理系統(tǒng)。假設(shè)一個(gè)大型企業(yè)的人力資源系統(tǒng),存儲(chǔ)了員工的各種信息和關(guān)系。以下哪種數(shù)據(jù)庫(kù)最適合處理這種復(fù)雜的關(guān)系型數(shù)據(jù)?()A.PostgreSQLB.MySQLC.OracleD.SQLServer14、大數(shù)據(jù)的處理往往需要消耗大量的計(jì)算資源。假設(shè)要對(duì)一個(gè)包含數(shù)十億條記錄的大數(shù)據(jù)集進(jìn)行復(fù)雜的機(jī)器學(xué)習(xí)模型訓(xùn)練。以下哪種方式最能有效地降低計(jì)算成本,同時(shí)保證模型的訓(xùn)練效果?()A.使用云計(jì)算平臺(tái)B.優(yōu)化算法和模型結(jié)構(gòu)C.采用分布式并行計(jì)算D.減少數(shù)據(jù)量15、對(duì)于一個(gè)包含大量地理位置信息的大數(shù)據(jù)集,要進(jìn)行空間查詢和分析,以下哪種數(shù)據(jù)庫(kù)或技術(shù)更適合?()A.空間數(shù)據(jù)庫(kù)B.文檔數(shù)據(jù)庫(kù)C.關(guān)系數(shù)據(jù)庫(kù)D.內(nèi)存數(shù)據(jù)庫(kù)二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋大數(shù)據(jù)如何優(yōu)化電信網(wǎng)絡(luò)規(guī)劃。2、(本題5分)大數(shù)據(jù)如何促進(jìn)公益慈善活動(dòng)的精準(zhǔn)開展?3、(本題5分)解釋大數(shù)據(jù)如何助力科學(xué)研究。4、(本題5分)簡(jiǎn)述大數(shù)據(jù)在零售行業(yè)的客戶細(xì)分中的應(yīng)用。三、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Python語(yǔ)言和Dask庫(kù),編寫一個(gè)程序?qū)σ粋€(gè)大型的音頻數(shù)據(jù)集進(jìn)行音頻特征提取。2、(本題5分)運(yùn)用Java語(yǔ)言和Flink流處理框架,開發(fā)一個(gè)程序來(lái)處理實(shí)時(shí)的能源消耗數(shù)據(jù)。分析能源消耗模式,為節(jié)能減排提供建議。3、(本題5分)利用Flink的SideOutput功能,在一個(gè)實(shí)時(shí)數(shù)據(jù)處理任務(wù)中,將滿足特定條件的數(shù)據(jù)輸出到不同的流中進(jìn)行進(jìn)一步處理。4、(本題5分)使用Python語(yǔ)言和MongoDB數(shù)據(jù)庫(kù),實(shí)現(xiàn)一個(gè)程序來(lái)存儲(chǔ)和管理大量的社交媒體用戶信息,包括用戶ID、用戶名、關(guān)注者數(shù)量等,并能夠根據(jù)關(guān)注者數(shù)量對(duì)用戶進(jìn)行排序和查詢。5、(本題5分)有一個(gè)包含金融市場(chǎng)新聞數(shù)據(jù)的文件,使用自然語(yǔ)言處理技術(shù)提取重要的金融事件和市場(chǎng)反應(yīng)。四、綜合分析題(本大題共4個(gè)小題,共40分)1、(本題10分)分析一家航空公司的乘客訂票數(shù)據(jù),優(yōu)化

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論