鄭州幼兒師范高等??茖W(xué)?!度斯ぶ悄軐I(yè)前沿》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
鄭州幼兒師范高等專科學(xué)?!度斯ぶ悄軐I(yè)前沿》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
鄭州幼兒師范高等??茖W(xué)校《人工智能專業(yè)前沿》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
鄭州幼兒師范高等??茖W(xué)?!度斯ぶ悄軐I(yè)前沿》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
鄭州幼兒師范高等??茖W(xué)校《人工智能專業(yè)前沿》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)鄭州幼兒師范高等??茖W(xué)?!度斯ぶ悄軐I(yè)前沿》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能在工業(yè)生產(chǎn)中的質(zhì)量檢測(cè)方面有廣泛應(yīng)用。假設(shè)要開(kāi)發(fā)一個(gè)能夠檢測(cè)產(chǎn)品缺陷的系統(tǒng),需要考慮光照、拍攝角度等因素對(duì)圖像的影響。以下關(guān)于解決這些影響的方法,哪一項(xiàng)是不正確的?()A.使用多光源和多角度拍攝,獲取更全面的產(chǎn)品圖像B.對(duì)圖像進(jìn)行預(yù)處理,如歸一化和標(biāo)準(zhǔn)化,減少光照和角度的影響C.忽略光照和角度的變化,依靠模型的自適應(yīng)能力D.建立光照和角度的模型,對(duì)圖像進(jìn)行校正2、在一個(gè)利用人工智能進(jìn)行供應(yīng)鏈優(yōu)化的項(xiàng)目中,例如預(yù)測(cè)需求、優(yōu)化庫(kù)存管理和物流路徑規(guī)劃,以下哪種能力是人工智能系統(tǒng)需要具備的關(guān)鍵特性?()A.大規(guī)模數(shù)據(jù)處理能力B.動(dòng)態(tài)適應(yīng)能力C.全局優(yōu)化能力D.以上都是3、人工智能中的模型壓縮技術(shù)可以減少模型的參數(shù)數(shù)量和計(jì)算量。假設(shè)要在移動(dòng)設(shè)備上部署一個(gè)深度學(xué)習(xí)模型,以下哪種模型壓縮方法可能最有效?()A.剪枝B.量化C.知識(shí)蒸餾D.以上都有可能4、人工智能在農(nóng)業(yè)領(lǐng)域的精準(zhǔn)種植方面有潛在應(yīng)用。假設(shè)利用人工智能監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.通過(guò)圖像識(shí)別和傳感器數(shù)據(jù),實(shí)時(shí)獲取農(nóng)作物的生長(zhǎng)參數(shù)B.基于數(shù)據(jù)分析預(yù)測(cè)病蟲(chóng)害的發(fā)生,及時(shí)采取防治措施C.人工智能可以完全自主地進(jìn)行農(nóng)作物的種植和管理,無(wú)需人工干預(yù)D.結(jié)合氣象數(shù)據(jù)優(yōu)化灌溉和施肥方案,提高資源利用效率5、人工智能中的可解釋性是一個(gè)重要的研究方向。假設(shè)要解釋一個(gè)深度學(xué)習(xí)模型的決策過(guò)程和輸出結(jié)果,以下關(guān)于模型可解釋性的描述,正確的是:()A.深度學(xué)習(xí)模型的內(nèi)部運(yùn)作非常復(fù)雜,無(wú)法進(jìn)行任何形式的解釋B.特征重要性分析可以幫助理解模型對(duì)輸入特征的依賴程度C.可視化技術(shù)只能展示模型的結(jié)構(gòu),不能解釋模型的決策邏輯D.模型可解釋性對(duì)于實(shí)際應(yīng)用沒(méi)有太大意義,只要模型性能好就行6、在人工智能的強(qiáng)化學(xué)習(xí)中,探索與利用的平衡是一個(gè)關(guān)鍵問(wèn)題。假設(shè)一個(gè)智能體在一個(gè)未知的環(huán)境中學(xué)習(xí),既要充分探索新的策略,又要利用已有的有效策略。以下哪種策略在平衡探索與利用方面表現(xiàn)較好?()A.ε-貪心策略B.基于置信上限的策略C.隨機(jī)策略D.固定策略7、人工智能中的弱人工智能和強(qiáng)人工智能是兩個(gè)不同的概念。假設(shè)我們?cè)谟懻撊斯ぶ悄艿陌l(fā)展階段,以下關(guān)于弱人工智能和強(qiáng)人工智能的描述,哪一項(xiàng)是正確的?()A.弱人工智能已經(jīng)能夠像人類一樣思考和創(chuàng)造B.強(qiáng)人工智能目前已經(jīng)廣泛應(yīng)用于各個(gè)領(lǐng)域C.弱人工智能只能完成特定的任務(wù),不具備通用性D.區(qū)分弱人工智能和強(qiáng)人工智能的關(guān)鍵在于計(jì)算能力8、在一個(gè)利用人工智能進(jìn)行智能客服的系統(tǒng)中,為了提高回答的準(zhǔn)確性和全面性,以下哪個(gè)方面的優(yōu)化可能是關(guān)鍵的?()A.知識(shí)庫(kù)的構(gòu)建和更新B.自然語(yǔ)言處理模型的改進(jìn)C.對(duì)話流程的設(shè)計(jì)D.以上都是9、在人工智能的文本分類任務(wù)中,假設(shè)要對(duì)大量的新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等。以下關(guān)于特征提取的方法,哪一項(xiàng)是最常用的?()A.使用詞袋模型,將文本表示為詞的頻率向量B.直接將原始文本作為輸入,不進(jìn)行任何特征提取C.運(yùn)用句法分析,提取句子的結(jié)構(gòu)特征D.僅考慮文本的標(biāo)題,忽略正文內(nèi)容10、在人工智能的文本摘要生成中,以下哪種方法可能導(dǎo)致生成的摘要與原文主題偏離?()A.過(guò)度依賴原文中的高頻詞匯B.未能理解原文的語(yǔ)義結(jié)構(gòu)C.忽略原文中的關(guān)鍵信息D.以上都有可能11、在人工智能的異常檢測(cè)任務(wù)中,例如檢測(cè)網(wǎng)絡(luò)中的異常流量或金融交易中的欺詐行為。假設(shè)正常數(shù)據(jù)的模式較為復(fù)雜,而異常數(shù)據(jù)相對(duì)較少且具有多樣性。以下哪種方法在這種情況下更適合進(jìn)行異常檢測(cè)?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.無(wú)監(jiān)督學(xué)習(xí)方法,自動(dòng)發(fā)現(xiàn)異常模式C.監(jiān)督學(xué)習(xí)方法,使用有標(biāo)注的異常數(shù)據(jù)進(jìn)行訓(xùn)練D.人工檢查所有數(shù)據(jù),識(shí)別異常12、人工智能在智能客服領(lǐng)域的應(yīng)用越來(lái)越廣泛。假設(shè)一個(gè)企業(yè)要部署智能客服系統(tǒng)。以下關(guān)于智能客服的描述,哪一項(xiàng)是不正確的?()A.能夠快速回答常見(jiàn)問(wèn)題,提高客戶服務(wù)的響應(yīng)速度B.可以通過(guò)不斷學(xué)習(xí)和優(yōu)化,提高回答的準(zhǔn)確性和滿意度C.智能客服能夠完全理解客戶的復(fù)雜情感和意圖,提供個(gè)性化的服務(wù)D.與人工客服相結(jié)合,可以提供更優(yōu)質(zhì)的客戶服務(wù)體驗(yàn)13、當(dāng)利用人工智能進(jìn)行智能醫(yī)療影像診斷,例如檢測(cè)腫瘤或病變,以下哪種挑戰(zhàn)和問(wèn)題可能是需要重點(diǎn)解決的?()A.數(shù)據(jù)標(biāo)注的準(zhǔn)確性和一致性B.模型的泛化能力和魯棒性C.結(jié)果的解釋和臨床可接受性D.以上都是14、在人工智能的圖像識(shí)別領(lǐng)域,除了卷積神經(jīng)網(wǎng)絡(luò),還有其他一些方法和技術(shù)。假設(shè)我們要對(duì)衛(wèi)星圖像中的地物進(jìn)行分類,以下哪種方法可能會(huì)與卷積神經(jīng)網(wǎng)絡(luò)結(jié)合使用,以提高分類效果?()A.支持向量機(jī)B.決策樹(shù)C.聚類分析D.以上都有可能15、假設(shè)要開(kāi)發(fā)一個(gè)能夠在虛擬環(huán)境中進(jìn)行自主探索和學(xué)習(xí)的人工智能體,例如在游戲中不斷提升能力,以下哪種學(xué)習(xí)機(jī)制和策略可能是關(guān)鍵的?()A.無(wú)監(jiān)督學(xué)習(xí)B.有監(jiān)督學(xué)習(xí)C.強(qiáng)化學(xué)習(xí)D.以上都是16、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像生成和數(shù)據(jù)增強(qiáng)等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的人臉圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN的訓(xùn)練過(guò)程非常穩(wěn)定,不會(huì)出現(xiàn)模式崩潰等問(wèn)題B.生成器和判別器的能力不需要平衡,只要其中一個(gè)強(qiáng)大就能生成好的圖像C.GAN可以通過(guò)不斷的對(duì)抗訓(xùn)練,學(xué)習(xí)到真實(shí)數(shù)據(jù)的分布,從而生成逼真的新樣本D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域的數(shù)據(jù)生成17、在人工智能的可解釋性方面,一直是一個(gè)研究熱點(diǎn)。假設(shè)開(kāi)發(fā)了一個(gè)用于信用評(píng)估的人工智能模型,以下關(guān)于解釋模型決策的方法,哪一項(xiàng)是不太可行的?()A.使用特征重要性分析,確定哪些輸入特征對(duì)模型的決策影響最大B.對(duì)模型的內(nèi)部結(jié)構(gòu)和參數(shù)進(jìn)行詳細(xì)解釋,讓用戶理解模型的工作原理C.通過(guò)生成示例來(lái)說(shuō)明模型在不同情況下的決策邏輯D.拒絕提供任何解釋,認(rèn)為模型的準(zhǔn)確性比可解釋性更重要18、人工智能中的語(yǔ)音識(shí)別技術(shù)能夠?qū)⑷祟惖恼Z(yǔ)音轉(zhuǎn)換為文字。以下關(guān)于語(yǔ)音識(shí)別的敘述,不準(zhǔn)確的是()A.語(yǔ)音識(shí)別系統(tǒng)通常包括聲學(xué)模型、語(yǔ)言模型和解碼器等部分B.語(yǔ)音識(shí)別的準(zhǔn)確率受到語(yǔ)音質(zhì)量、口音和背景噪聲等因素的影響C.語(yǔ)音識(shí)別技術(shù)已經(jīng)非常完美,能夠準(zhǔn)確識(shí)別各種口音和語(yǔ)速的語(yǔ)音D.深度學(xué)習(xí)的應(yīng)用顯著提高了語(yǔ)音識(shí)別的性能和準(zhǔn)確率19、在人工智能的模型訓(xùn)練中,過(guò)擬合和欠擬合是常見(jiàn)的問(wèn)題。假設(shè)正在訓(xùn)練一個(gè)用于預(yù)測(cè)房?jī)r(jià)的人工智能模型,以下關(guān)于過(guò)擬合和欠擬合的描述,正確的是:()A.過(guò)擬合是指模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)差,在新數(shù)據(jù)上表現(xiàn)好;欠擬合則相反B.模型越復(fù)雜,越不容易出現(xiàn)過(guò)擬合問(wèn)題,因此應(yīng)該盡量增加模型的復(fù)雜度C.正則化技術(shù)可以有效地防止過(guò)擬合,而增加訓(xùn)練數(shù)據(jù)量可以解決欠擬合問(wèn)題D.過(guò)擬合和欠擬合只與模型的架構(gòu)有關(guān),與數(shù)據(jù)和訓(xùn)練過(guò)程無(wú)關(guān)20、在人工智能的語(yǔ)音識(shí)別任務(wù)中,環(huán)境噪聲和口音的多樣性會(huì)影響識(shí)別效果。假設(shè)要開(kāi)發(fā)一個(gè)能夠在嘈雜環(huán)境和多種口音下準(zhǔn)確識(shí)別語(yǔ)音的系統(tǒng),以下哪種技術(shù)或方法在提高系統(tǒng)的適應(yīng)性方面最為關(guān)鍵?()A.聲學(xué)模型的優(yōu)化B.語(yǔ)言模型的融合C.多模態(tài)信息的利用D.以上方法結(jié)合使用21、在人工智能的圖像生成任務(wù)中,生成對(duì)抗網(wǎng)絡(luò)(GAN)表現(xiàn)出色。假設(shè)要生成逼真的人物肖像,以下哪個(gè)因素對(duì)于生成效果的影響最為關(guān)鍵?()A.判別器的精度B.生成器的網(wǎng)絡(luò)結(jié)構(gòu)C.訓(xùn)練數(shù)據(jù)的質(zhì)量和多樣性D.優(yōu)化算法的選擇22、人工智能在交通領(lǐng)域的應(yīng)用包括智能交通管理、自動(dòng)駕駛等。假設(shè)一個(gè)城市要實(shí)施智能交通系統(tǒng)。以下關(guān)于人工智能在交通中的應(yīng)用描述,哪一項(xiàng)是錯(cuò)誤的?()A.通過(guò)分析交通流量數(shù)據(jù),優(yōu)化信號(hào)燈控制,減少擁堵B.自動(dòng)駕駛汽車可以提高交通安全,降低人為因素導(dǎo)致的事故發(fā)生率C.智能交通系統(tǒng)能夠完全解決城市的交通問(wèn)題,無(wú)需其他基礎(chǔ)設(shè)施的改進(jìn)D.利用人工智能預(yù)測(cè)交通需求,合理規(guī)劃公共交通線路和站點(diǎn)23、人工智能在醫(yī)療領(lǐng)域的應(yīng)用日益廣泛,假設(shè)一家醫(yī)院正在考慮引入人工智能輔助診斷系統(tǒng)。該系統(tǒng)通過(guò)分析大量的醫(yī)療影像和病歷數(shù)據(jù)來(lái)提供診斷建議。以下關(guān)于人工智能在醫(yī)療診斷中應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.人工智能可以快速處理和分析海量的醫(yī)療數(shù)據(jù),提高診斷效率B.它能夠發(fā)現(xiàn)人類醫(yī)生可能忽略的細(xì)微模式和特征,提高診斷的準(zhǔn)確性C.人工智能診斷系統(tǒng)完全可以替代人類醫(yī)生,獨(dú)立做出最終的診斷決策D.可以為醫(yī)生提供參考和補(bǔ)充信息,幫助醫(yī)生做出更全面和準(zhǔn)確的診斷24、在人工智能的醫(yī)療影像診斷中,假設(shè)要利用深度學(xué)習(xí)模型輔助醫(yī)生進(jìn)行癌癥檢測(cè),以下關(guān)于這種應(yīng)用的描述,正確的是:()A.深度學(xué)習(xí)模型的診斷結(jié)果總是準(zhǔn)確無(wú)誤的,可以直接作為最終診斷依據(jù)B.醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識(shí)在與模型的結(jié)合中仍然起著關(guān)鍵作用C.訓(xùn)練模型的數(shù)據(jù)越多,模型在醫(yī)療影像診斷中的表現(xiàn)就一定越好D.醫(yī)療影像診斷中的深度學(xué)習(xí)模型不需要經(jīng)過(guò)嚴(yán)格的驗(yàn)證和監(jiān)管25、人工智能在金融領(lǐng)域的應(yīng)用包括風(fēng)險(xiǎn)評(píng)估、欺詐檢測(cè)等。假設(shè)一家銀行要利用人工智能進(jìn)行客戶信用評(píng)估。以下關(guān)于人工智能在金融領(lǐng)域應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)分析客戶的交易記錄、信用歷史等多維度數(shù)據(jù)來(lái)評(píng)估信用風(fēng)險(xiǎn)B.人工智能模型能夠自適應(yīng)地學(xué)習(xí)和更新,以適應(yīng)不斷變化的金融市場(chǎng)環(huán)境C.人工智能的決策結(jié)果完全可靠,不需要人類專家的監(jiān)督和審核D.可以幫助金融機(jī)構(gòu)降低成本,提高風(fēng)險(xiǎn)控制的準(zhǔn)確性和效率26、人工智能中的語(yǔ)音識(shí)別技術(shù)正在改變?nèi)藗兣c計(jì)算機(jī)的交互方式。假設(shè)要開(kāi)發(fā)一個(gè)能夠準(zhǔn)確識(shí)別不同口音和語(yǔ)速的語(yǔ)音識(shí)別系統(tǒng)。以下關(guān)于語(yǔ)音識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.特征提取是語(yǔ)音識(shí)別中的關(guān)鍵步驟,用于將語(yǔ)音信號(hào)轉(zhuǎn)換為可處理的特征向量B.聲學(xué)模型和語(yǔ)言模型共同作用,提高語(yǔ)音識(shí)別的準(zhǔn)確率C.語(yǔ)音識(shí)別系統(tǒng)對(duì)于背景噪音和多人同時(shí)說(shuō)話的場(chǎng)景能夠輕松應(yīng)對(duì),不受任何影響D.不斷增加訓(xùn)練數(shù)據(jù)的多樣性和規(guī)模,可以改善語(yǔ)音識(shí)別系統(tǒng)在復(fù)雜場(chǎng)景下的性能27、在人工智能的發(fā)展中,算力的需求不斷增長(zhǎng)。假設(shè)要訓(xùn)練一個(gè)大型的人工智能模型,以下關(guān)于算力的描述,正確的是:()A.普通的個(gè)人電腦就能夠滿足訓(xùn)練大型人工智能模型的算力需求B.算力的提升主要依賴硬件的改進(jìn),軟件優(yōu)化的作用不大C.云計(jì)算平臺(tái)可以提供強(qiáng)大的算力支持,幫助研究人員和企業(yè)訓(xùn)練復(fù)雜的人工智能模型D.算力的增長(zhǎng)對(duì)人工智能模型的性能提升沒(méi)有實(shí)質(zhì)性的幫助28、人工智能中的強(qiáng)化學(xué)習(xí)算法可以用于優(yōu)化資源分配。假設(shè)一個(gè)數(shù)據(jù)中心要通過(guò)人工智能分配計(jì)算資源,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.根據(jù)服務(wù)器負(fù)載和任務(wù)需求,動(dòng)態(tài)調(diào)整資源分配策略B.以最小化能耗和提高服務(wù)質(zhì)量為目標(biāo),優(yōu)化資源利用效率C.強(qiáng)化學(xué)習(xí)可以快速適應(yīng)數(shù)據(jù)中心的變化,無(wú)需人工重新配置D.強(qiáng)化學(xué)習(xí)算法在資源分配中總是能夠找到最優(yōu)解,不存在次優(yōu)情況29、在人工智能的研究領(lǐng)域中,自然語(yǔ)言處理是重要的一部分。假設(shè)我們要開(kāi)發(fā)一個(gè)能夠自動(dòng)回答用戶問(wèn)題的智能客服系統(tǒng),需要對(duì)大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和分析。以下哪種技術(shù)在處理自然語(yǔ)言的語(yǔ)義理解方面可能發(fā)揮關(guān)鍵作用?()A.詞法分析B.句法分析C.語(yǔ)義網(wǎng)絡(luò)D.語(yǔ)音識(shí)別30、假設(shè)要開(kāi)發(fā)一個(gè)能夠在復(fù)雜的商業(yè)環(huán)境中進(jìn)行智能決策支持的人工智能系統(tǒng),例如投資決策或市場(chǎng)策略制定,以下哪種技術(shù)和知識(shí)的融合可能是必要的?()A.數(shù)據(jù)分析和領(lǐng)域?qū)<抑R(shí)B.機(jī)器學(xué)習(xí)算法和經(jīng)濟(jì)學(xué)原理C.深度學(xué)習(xí)模型和管理學(xué)理論D.以上都是二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)基于Python的Scikit-learn庫(kù),運(yùn)用高斯混合模型(GMM)對(duì)一個(gè)音頻數(shù)據(jù)集進(jìn)行聲音分類,如區(qū)分不同樂(lè)器的聲音或不同人的語(yǔ)音。評(píng)估模型在不同噪聲環(huán)境下的分類性能。2、(本題5分)利用Python的TensorFlow庫(kù),構(gòu)建一個(gè)深度強(qiáng)化學(xué)習(xí)模型,讓智能體在一個(gè)模擬的機(jī)器人操作環(huán)境中學(xué)習(xí)完成復(fù)雜的裝配任務(wù)。設(shè)計(jì)合理的獎(jiǎng)勵(lì)函數(shù)和動(dòng)作空間,評(píng)估智能體的學(xué)習(xí)效率和任務(wù)完成質(zhì)量。3、(本題5分)借助遺傳算法優(yōu)化一個(gè)圖像壓縮算法,提高壓縮比和圖像質(zhì)量。4、(本題5分)利用Python的PyTorch庫(kù),構(gòu)建一個(gè)多層卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,對(duì)食品圖像數(shù)據(jù)進(jìn)行分類,如區(qū)分不同種類的水果、蔬菜和糕點(diǎn)。研究數(shù)據(jù)增強(qiáng)技術(shù)對(duì)模型泛化能力的影響。5、(本題5分)利用Scikit-learn中的邏輯回歸算法,對(duì)電商用戶的購(gòu)買行為進(jìn)行預(yù)測(cè),判斷用戶是否會(huì)購(gòu)買某一類商品。分析用戶的歷史購(gòu)買數(shù)據(jù)、瀏覽記錄和個(gè)人信

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論