河南輕工職業(yè)學(xué)院《數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
河南輕工職業(yè)學(xué)院《數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
河南輕工職業(yè)學(xué)院《數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)河南輕工職業(yè)學(xué)院

《數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)抽樣可以減少數(shù)據(jù)分析的時(shí)間和成本,同時(shí)保證樣本具有代表性B.隨機(jī)抽樣是一種常用的數(shù)據(jù)抽樣方法,能夠確保每個(gè)數(shù)據(jù)點(diǎn)被選中的概率相等C.分層抽樣可以根據(jù)某些特征將數(shù)據(jù)分為不同層次,然后從各層次中進(jìn)行抽樣D.數(shù)據(jù)抽樣的樣本大小越大,分析結(jié)果就越準(zhǔn)確,因此應(yīng)盡量選擇大樣本2、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的結(jié)果解釋和評(píng)估是確保結(jié)果可靠性的重要環(huán)節(jié)。以下關(guān)于數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估應(yīng)結(jié)合具體的業(yè)務(wù)問(wèn)題和背景進(jìn)行B.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估可以使用統(tǒng)計(jì)方法和可視化工具來(lái)輔助C.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估應(yīng)考慮結(jié)果的準(zhǔn)確性、可靠性和實(shí)用性等方面D.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估只需要由數(shù)據(jù)分析師進(jìn)行,不需要其他人員參與3、在數(shù)據(jù)分析中,數(shù)據(jù)集成用于將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要集成來(lái)自不同數(shù)據(jù)庫(kù)的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)集成的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.需要解決數(shù)據(jù)格式不一致、字段命名差異等問(wèn)題B.可以使用ETL(Extract,Transform,Load)工具來(lái)實(shí)現(xiàn)數(shù)據(jù)的抽取、轉(zhuǎn)換和加載C.數(shù)據(jù)集成過(guò)程中可能會(huì)引入重復(fù)數(shù)據(jù)和數(shù)據(jù)沖突,需要進(jìn)行處理D.數(shù)據(jù)集成可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的質(zhì)量和一致性4、假設(shè)要分析一個(gè)零售企業(yè)的庫(kù)存數(shù)據(jù),包括商品種類、庫(kù)存數(shù)量、銷售速度等,以制定合理的補(bǔ)貨策略。以下哪個(gè)因素可能對(duì)庫(kù)存管理的效率產(chǎn)生最大影響?()A.商品的銷售預(yù)測(cè)準(zhǔn)確性B.供應(yīng)商的交貨時(shí)間C.庫(kù)存成本D.以上都是5、在進(jìn)行時(shí)間序列分析時(shí),如果數(shù)據(jù)存在明顯的長(zhǎng)期趨勢(shì)和季節(jié)性變動(dòng),以下哪種模型較為適用?()A.ARIMA模型B.SARIMA模型C.Holt-Winters模型D.以上都不是6、在數(shù)據(jù)分析的探索性分析階段,假設(shè)面對(duì)一個(gè)包含消費(fèi)者購(gòu)買行為的大型數(shù)據(jù)集,包括購(gòu)買金額、購(gòu)買頻率、購(gòu)買商品類別等多個(gè)變量。為了初步了解數(shù)據(jù)的特征、分布和潛在關(guān)系,以下哪種方法可能最為有效?()A.計(jì)算各個(gè)變量的均值、中位數(shù)和標(biāo)準(zhǔn)差等統(tǒng)計(jì)量B.進(jìn)行相關(guān)性分析,確定變量之間的關(guān)聯(lián)程度C.繪制直方圖和散點(diǎn)圖來(lái)觀察變量的分布和關(guān)系D.隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行簡(jiǎn)單觀察7、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行缺失值處理,同時(shí)考慮數(shù)據(jù)的分布特征,以下哪種方法較為合適?()A.隨機(jī)森林插補(bǔ)B.基于聚類的插補(bǔ)C.基于回歸的插補(bǔ)D.以上都不是8、在處理大量數(shù)據(jù)時(shí),為了提高數(shù)據(jù)處理效率,以下哪種數(shù)據(jù)結(jié)構(gòu)更適合快速查找和插入操作?()A.數(shù)組B.鏈表C.棧D.隊(duì)列9、當(dāng)分析數(shù)據(jù)的分布特征時(shí),以下哪個(gè)圖形可以直觀地展示數(shù)據(jù)的眾數(shù)?()A.直方圖B.莖葉圖C.箱線圖D.餅圖10、數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)需要考慮多方面因素。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)設(shè)計(jì)的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)應(yīng)包括數(shù)據(jù)源、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)處理和數(shù)據(jù)訪問(wèn)等部分B.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)應(yīng)考慮數(shù)據(jù)的規(guī)模、增長(zhǎng)速度和使用頻率等因素C.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)可以采用分層架構(gòu),將數(shù)據(jù)分為不同的層次進(jìn)行管理D.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)一旦確定就不能再進(jìn)行調(diào)整和優(yōu)化,否則會(huì)影響系統(tǒng)的穩(wěn)定性11、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡(jiǎn)化數(shù)據(jù)集B.對(duì)于錯(cuò)誤數(shù)據(jù),可以根據(jù)其他相關(guān)字段的值進(jìn)行推測(cè)和修正C.忽略重復(fù)記錄,因?yàn)樗鼈儗?duì)數(shù)據(jù)分析結(jié)果影響不大D.不進(jìn)行任何數(shù)據(jù)清洗操作,直接使用原始數(shù)據(jù)進(jìn)行分析12、數(shù)據(jù)分析中的主成分分析(PCA)常用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集,包含多個(gè)相關(guān)的特征。通過(guò)PCA降維后,如果解釋方差的比例較低,可能意味著什么?()A.降維效果較好,保留了主要信息B.丟失了較多的重要信息,需要重新考慮降維方法C.原始數(shù)據(jù)的質(zhì)量較差D.對(duì)后續(xù)的分析和建模沒(méi)有影響13、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的成績(jī),以下關(guān)于假設(shè)檢驗(yàn)的描述,正確的是:()A.不設(shè)定原假設(shè)和備擇假設(shè),直接進(jìn)行檢驗(yàn)B.忽略檢驗(yàn)的顯著性水平,隨意得出結(jié)論C.正確設(shè)定原假設(shè)和備擇假設(shè),選擇合適的檢驗(yàn)統(tǒng)計(jì)量,根據(jù)顯著性水平和樣本數(shù)據(jù)進(jìn)行推斷,并解釋檢驗(yàn)結(jié)果的實(shí)際意義D.只關(guān)注檢驗(yàn)結(jié)果是否拒絕原假設(shè),不考慮效應(yīng)大小和實(shí)際應(yīng)用價(jià)值14、數(shù)據(jù)分析中的探索性數(shù)據(jù)分析(EDA)有助于理解數(shù)據(jù)的特征和分布。假設(shè)我們正在分析一個(gè)關(guān)于股票市場(chǎng)的數(shù)據(jù)集,包括股票價(jià)格、成交量等變量。在進(jìn)行EDA時(shí),以下哪種可視化方法可能最有助于發(fā)現(xiàn)價(jià)格和成交量之間的潛在關(guān)系?()A.柱狀圖B.折線圖C.散點(diǎn)圖D.箱線圖15、對(duì)于一個(gè)包含多個(gè)數(shù)值型變量的數(shù)據(jù)集,若要判斷數(shù)據(jù)是否符合正態(tài)分布,應(yīng)采用哪種檢驗(yàn)方法?()A.t檢驗(yàn)B.卡方檢驗(yàn)C.正態(tài)性檢驗(yàn)D.F檢驗(yàn)二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)闡述數(shù)據(jù)可視化中的動(dòng)畫(huà)效果運(yùn)用,說(shuō)明如何通過(guò)動(dòng)畫(huà)效果增強(qiáng)數(shù)據(jù)展示的動(dòng)態(tài)性和吸引力,并避免過(guò)度使用。2、(本題5分)在數(shù)據(jù)分析中,如何處理數(shù)據(jù)中的重復(fù)記錄?請(qǐng)說(shuō)明常見(jiàn)的處理方法和注意事項(xiàng),并舉例說(shuō)明在數(shù)據(jù)庫(kù)操作中的應(yīng)用。3、(本題5分)簡(jiǎn)述數(shù)據(jù)挖掘中的文本分類技術(shù),如樸素貝葉斯、支持向量機(jī)等在文本分類中的應(yīng)用,并比較它們的性能。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在跨境電商業(yè)務(wù)中,數(shù)據(jù)分析對(duì)于市場(chǎng)選擇和供應(yīng)鏈優(yōu)化具有關(guān)鍵作用。以某跨境電商企業(yè)為例,分析如何運(yùn)用數(shù)據(jù)分析來(lái)評(píng)估不同國(guó)家和地區(qū)的市場(chǎng)潛力、優(yōu)化商品采購(gòu)和庫(kù)存管理,以及如何應(yīng)對(duì)跨境物流和支付的復(fù)雜性。2、(本題5分)影視娛樂(lè)行業(yè)可以基于觀眾的觀看數(shù)據(jù)和評(píng)價(jià)數(shù)據(jù)進(jìn)行內(nèi)容創(chuàng)作和推薦。闡述如何運(yùn)用數(shù)據(jù)分析了解觀眾喜好、預(yù)測(cè)熱門題材、優(yōu)化內(nèi)容推薦算法,以及如何應(yīng)對(duì)盜版和非法傳播等問(wèn)題。3、(本題5分)政府部門在公共服務(wù)和政策制定中可以借助數(shù)據(jù)分析提高決策的科學(xué)性和有效性。請(qǐng)?jiān)敿?xì)探討如何運(yùn)用數(shù)據(jù)分析來(lái)評(píng)估公共政策效果、優(yōu)化資源分配和預(yù)測(cè)社會(huì)需求,研究政府?dāng)?shù)據(jù)開(kāi)放和共享過(guò)程中的數(shù)據(jù)安全和隱私保護(hù)問(wèn)題,以及如何促進(jìn)數(shù)據(jù)分析在政府治理中的應(yīng)用和創(chuàng)新。4、(本題5分)在當(dāng)今數(shù)字化時(shí)代,社交媒體數(shù)據(jù)成為企業(yè)了解消費(fèi)者意見(jiàn)和情感傾向的重要來(lái)源。探討如何運(yùn)用數(shù)據(jù)分析方法從海量的社交媒體數(shù)據(jù)中提取有價(jià)值的信息,如消費(fèi)者偏好、品牌聲譽(yù)等,并分析這些信息對(duì)企業(yè)決策的影響。5、(本題5分)在物流快遞行業(yè),包裹的運(yùn)輸軌跡數(shù)據(jù)、派送時(shí)效數(shù)據(jù)等豐富多樣。分析如何借助數(shù)據(jù)分析手段,如配送路線優(yōu)化、網(wǎng)點(diǎn)布局規(guī)劃等,提高物流配送效率,降低運(yùn)營(yíng)成本,同時(shí)探討在數(shù)據(jù)實(shí)時(shí)更新、地理信息系統(tǒng)應(yīng)用和客戶需求多樣化方面可能面臨的問(wèn)題及應(yīng)對(duì)方法。四、案例分析題(本大題共3個(gè)小題,共30分)1、(本題10分)某社交平臺(tái)收集了用戶的注冊(cè)信息、登錄時(shí)間、發(fā)布內(nèi)容、關(guān)注關(guān)系等數(shù)據(jù)。分析用戶的活躍時(shí)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論