




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
△△△
LookingGlass
Bringingtech-ledbusinesschangesintofocus
/thoughtworks
strategyDesign.Engineering·2025
Introduction3
OperationalizingAIforbusinessimpact4
Strengtheningthedatavaluechain11
ReimaginingresponsibletechfortheeraofgenerativeAI18
Enablingricherexperiencesthroughmultimodalinteractions26
Unlockinggreatervaluefromphysical-digitalconvergence34
Glossary42
△△
Introduction
WelcometotheLookingGlass2025.Unlikemanytechtrendreports,
Thoughtworks’LookingGlassisnotintendedtoshinealightonthe
latestbuzzwords.Instead,wetakealongtermlookatthetechnology
horizonsandexplorewhatthatmeansforbusinesses.Whatarethethingsyouneedtoknowaboutnow?Andwhat’slikelytobeimportantinthe
longerterm?TheLookingGlassenablesyoutounderstandandinterpretemergingtechnologiessoyoucanmakesound,strategicchoicesfor
yourorganization.
Therelentlessspeedoftechnologicaladvancementmakesithardertopredictwhat’scomingandwhereyourinvestmentswillpayoffthemost.BreakthroughsinareassuchasagenticAIpromisetoupendhowwe
thinkabouttechnology.Buthowquicklyshouldyoupreparetoadapt?Here’swhereThoughtworks’LookingGlasscomesin.
Inthisedition,weexploremorethan90trendsthroughfivedistinct
perspectivesthatdefinetheevolvingtechlandscapeinbusiness.
Someofthesetrendsarealreadytransformingoperations,whileothersremainjustoverthehorizon,sparkinginterestanddebatebutstill
unfolding.Forbusinessleaders,keepingabroad,strategicperspectiveonthesedevelopments—bothcurrentandfuture—isessential.
LookingGlassoffersexactlythat:aframeworktogainacomprehensiveunderstandingofkeytrends.
Thefivelensesprovideclarityandfocus,helpingensureyourorganizationremainsadaptable,resilientandreadytoharnessorrespondtothe
inevitableshiftsintechnologythatshapeourmodernworld.
RachelLaycock
ChiefTechnologyOfficer,Thoughtworks
?Thoughtworks,Inc.AllRightsReserved.4
OperationalizingAIforbusinessimpact
ThemainstreamingofAI—andgenerativeAIinparticular—iscontinuingapace.ButasAIproliferates,it’smoreevidentthatsuccessfullyoperationalizingAImodelsandbringingthemtoproductionremainsachallenge.Fromquestionableoutputtounintendedconsequences,thereareahostofrealand
projectedscenariosthatpreventorganizationsfromleveragingAItoitsfullpotential.
Enterprisescontinuetostrugglewithdataquality,dataaccessibilityandthechallengesofdataat
scale,allofwhichremainfoundationaltorobust,effectiveAI.Asourdataplatformlensexplores,
carefuldatacuration,andeffectivedataengineeringandarchitectureareessential.Theimportanceofsyntheticdata,particularlyinresearchcontexts,asatooltoavoidprivacyanddataintegrityissuesisalsobecomingmoreandmoreapparent.
OrganizationsalsoneedtodevelopbetterapproachestotheevaluationandcontrolofAIsystems.
Forward-lookingenterprisesareadopting‘evals’—testsofAIoutputtodeterminereliability,accuracyandrelevance—andguardrails,programmedpolicylayersthatmitigatetheinherentunpredictabilityofgenerativesystems.
Asadoptionincreases,
improvingthemechanisms
throughwhichAIsystems
areconnectedwithenterpriseapplicationsgrowsmore
important.ProxyservicesareemergingtohelpdeveloperslinkAImodelswiththe
applicationstheybuild.
?Thoughtworks,Inc.AllRightsReserved.5
OperationalizingAIforbusinessimpact
AIagentsaresometimespositionedasthenextstepintheevolutionofAI,duetotheircapacitytomimichumanreasoning.However,thetechnologyremainsrelativelynew,andfindingapplicationsforagentsrequiresdomainexpertise,aswellastheabilitytopreciselymapandmodelcomplex
processesandinteractions.TobuildasustainableandproductiveAIpractice,it’svitalthatthe
organizationdoesn’tresorttoshortcuts,acquirestherequisiteskillsandkeepsinnovationrootedinbusinessrealities.
“Thelessonsfromautomationendeavorsinthe
‘80scouldhelptobuildtherightlevelofhuman-AIagenthandovers.Wemustfocusonaugmentinghumansratherthantryingtosubstitutetheir
currenttaskscompletely.”
SrinivasanRaguraman
TechnicalPrincipal,Thoughtworks
Signals
Theemergenceofsmalllanguagemodels,suchasMicrosoft’sphi-3,andAMD’sAMD135.
ThesemakeitpossibletorunAImodelsattheedgeofnetworksondeviceslikemobilephones,andbecausetheyarerelativelylightweight,focusedandefficient,havearangeofpositive
business,securityandsustainabilityimplications.LLMsalsocontinuetoevolve,withAnthropic’sClaude3.5SonnetLLM,whichhassetindustrybenchmarksintermsofperformance,recentlyupgradedtoincludecomputerusecapabilities.
Researchshowingthatformanyorganizations,AIinvestmentsandadoptionarentnecessarilytranslatingintodeploymentorbusinessimpact.Whileinterestin(andspendingon)AIsolutionsremainshigh,businessesarebeginningtopaymoreattentiontothecostofAIprojects,and
steppingupeffortstoensuretheydelivervalue.
ThecomingintoforceoftheEuropeanUnionsAIAct,whichsetsaninternationalbenchmarkbylayingoutobligationsarounddatagovernance,documentation,humanoversightandsecurityforbusinessesadoptingAIsystems.
Sustained,massiveinvestmentindatacenters,withGoogleeventurningtonuclearpower
togeneratethevastamountsofpoweritsAIofferingsarelikelytorequire.ThisindicatesAIisa
long-termbetthatwillcontinuetogainmomentuminthebusinesscontext,andinsocietyasawhole.
ThegrowthoftoolssimplifyinghowengineersandothersinterfacewithAImodels,suchasLiteLLMandLangchain.
RenewedfocusontacklingLLMhallucinationsandfabrications,withnoveltechniqueslike
‘semanticentropy’beingappliedtorootouterrors,andLLMspolicingtheoutputofotherLLMs.
RisingawarenessofshadowAI,ortheuseofunsanctionedAItoolsintheenterprisecontext,
whichcouldposesignificantproblemsforcompaniesifsensitiveinformationisleakedtoLLMsbyemployees.InonerecentsurveyathirdoforganizationsadmittedtofindingithardtomonitortheillicituseofAIamongtheirteams.
?Thoughtworks,Inc.AllRightsReserved.6
OperationalizingAIforbusinessimpact
Trendstowatch
e
e
s
o
t
g
n
i
n
n
i
g
e
B
48
47
49
O
h
t
n
h
e
i
r
o
43
42
44
n
o
z
41
45
46
40
36
37
32
35
31
51
20
30
29
34
19
14
25
w
24
o
n
50
23
18
13
9
28
33
39
g
12
8
5
22
27
38
17
n
i
e
21
16
11
7
4
26
3
e
S
10
6
1
2
15
AnticipateAnalyzeAdopt
Strategicrecommendation
Seeingnow
Adopt
1.Accessibilityinmultimodalexperiences
2.Agent-basedsimulation
3.AIagents
4.AIasaservice
5.AIinsecurity
6.AI-assistedsoftwaredevelopment
7.Automatedcompliance
8.Collaborationecosystems
9.Datamesh
10.Edgecomputing
11.Ethicalframeworks
12.EvaluatingandmanagingAIoutputs
13.Evolutionaryarchitectures
14.ExplainableAI
15.GenerativeAI
16.Integrateddata
andAIplatforms
17.InterfacingwithAI
18.LLMOps
19.MLOps
20.Modeltrainingoptimization
21.Onlinemachinelearning
22.Platformsasproducts
23.Privacyfirst
24.Software-definedvehicles
25.Vectordatabases
Analyze
26.AImarketplaces
27.AIsafetyandregulation
28.AI-generatedmedia
29.Automatedworkforce
30.Autonomousrobots
31.ChangingperceptionsofAI
32.Easingaccessto
generativeAI
33.Federatedlearning
34.MultimodalAI
35.Personalizedhealthcare
36.Syntheticdata
Anticipate
37.Understandableconsent
Beginningtosee
Adopt
38.AI-readydata
39.Finegraineddata
accesscontrols
Analyze
40.AIObservability
41.Datalineage
42.GenAIcomputercontrol
43.Intelligentmachineto
machinecollaboration
44.Productionimmunesystems
45.Smalllanguagemodels
46.Talktodata
Anticipate
47.Adversarialmachinelearning
48.Affective(emotional)computing
49.AIinrobotics
Onthehorizon
Adopt
Analyze
50.AIavatars
Anticipate
51.AGIresearch
OperationalizingAIforbusinessimpact
?Thoughtworks,Inc.AllRightsReserved.7
Theopportunities
Bygettingaheadofthecurveonthislens,organizationscan:
EnhanceknowledgemanagementandtransferbyadoptingGenAItohelpemployeessiftthrough,summarizeandanalyzestoresofenterprisedata,whetherstructured
orunstructured.Awiderangeofproductsareemergingtofacilitatetheretrievalanddisseminationofimportantinformationinindustrieslikeproperty.
HarnessAItoaccelerateprocesseslikelegacymodernizationandcoding.ThoughtworksisalreadysuccessfullyapplyingGenAItoassistteamswithoneofthemostdifficultaspectsofmodernization:understandingandunpackingtheintricatewebofconnectionsthat
typicallyunderpinlegacysystemsandcodebases.AIassistantscanalsosignificantly
boosttheproductivityofsoftwaredevelopmentandotherteamsbytakingoverfrequent,repetitivetasks.
ExploreAIagentstoelevateautomation,potentiallytransforminghowemployeesperformtaskslikeschedulingandcustomersupport,andraisingthebarforengagementand
personalizationincustomerinteractions.
BoostthespeedatwhichLLMsarebroughtintoproduction,andtheireffectiveness
whendeployedthroughemergingpracticesandtoolslikeLLMOps,whichacceleratemodeldevelopment;retrieval-augmentedgeneration(RAG),whichcanenhancemodels’reliability;andAIgatewaysorsmartendpointstoconnectAIsystemstoapplications.
Developandcommunicateajoined-upAIstrategythatempowersemployeestoexperimentwithAIinastructuredway,whilepreventingtheemergenceof‘shadowAI’thatcouldposeathreattotheorganization’sintellectualpropertyorreputation.
LeveragesmalllanguagemodelstobringAIinnovationstoedgedevices,offering
opportunitiesforeverythingfromoperationalanalyticstopersonalization—without
compromisingprivacy,sincedatadoesn’thavetobemovedtothecenterofanetwork.
LeadthewayintermsofcomplianceandethicalAIpractices.WeurgeourclientsnotjusttofollowbutembraceregulationsliketheEUAIAct,assuchlegislationoftenreflectswidersocietalsentimentandconcerns—andpotentialcustomerstakenoticeofbusinessesthatareresponding.
?Thoughtworks,Inc.AllRightsReserved.8
OperationalizingAIforbusinessimpact
Whatwe’vedone
PEXA
ThoughtworkspartneredwithdigitalpropertytechnologycompanyPEXA,AWSandRedactiveto
developaninnovativeandversatileAIassistantthathasboostedtheproductivityofPEXA’semployeesbyprovidingpersonalizedanswerstoqueriesandaugmentingtaskslikeinformationdiscovery.
SeamlesslyintegratedwithPEXA’sinternalsystems,thesolutionalsometrobustrequirementsfordatasecurityandprivacybyequippingtheassistantwithpermissionsawareness,ensuringemployeesareonlyabletoaccessinformationclearedforsharing.
OperationalizingAIforbusinessimpact
?Thoughtworks,Inc.AllRightsReserved.9
Actionableadvice
Thingstodo(Adopt)
?IdentifyAIchampionswhocanhelpguideandteachyourorganizationaboutthepotentialuse
casesforemergingsolutions—butunderstandthatAIcanandwillbeappliedindifferentways
inalmosteverypartoftheenterprise,whichmeansthesechampionsneedtokeepanopenmind.Havingpeoplewithaclearideaofwhat‘good’lookslikecanreducerisksandensureAIinitiativesfocusonmeaningfulbusinessresults.
?ImplementaholisticandcomprehensiveAIstrategyforyourorganizationthatincludesguidelinesonpermittedtoolsandthecontextsinwhichAIcanbeused,tominimizetherisksofshadowAI.
?Adoptretrieval-augmentedgeneration(RAG)whendevelopingAIsystems,togivereliabilityanupliftandpositionmodelstocreatemorespecificoutputs.Integratingevalsandobservabilitycanfurtherenhancetheresilienceofsystemsoverthelongterm.
?EmbedAIthroughoutthesoftwaredevelopmentlifecycle.Maximumresultsareachievedwhen
theroleofAIisn’tjustlimitedtocoding,butassistswithprocessesliketestinganddocumentation.
?ApplydatameshanddataproductthinkingtoensureAIapplicationsarebuiltontherobustdatafoundationneededtoensuretheydeliverbusinessorcustomervalue.Disciplineslike
datacuration,whichcreates,organizesandmanagesdatasetssothey’retransparentandeasilyaccessible,alsocontributetothesuccessofAI.
?UseproxiestosimplifythewayteamsinteractandleverageAImodels,pavingthewayfortheenhancementofapplicationstheydevelopwithAIfeaturesandcapabilities.
OperationalizingAIforbusinessimpact
?Thoughtworks,Inc.AllRightsReserved.10
Thingstoconsider(Analyze)
?Avoidwhat’sknownasthe‘substitutionmyth’—theideathatAIcansimplydirectlyreplacea
human.Instead,buildandimplementsystemsthataugmentrolestomaketeamsmoreproductiveandengaged,whileacknowledgingthecontinuedimportanceofhumanjudgementandoversight.
?BecognizantofvariedexpectationsaroundAI.ResearchsuggestspeoplemayapproachAIdifferentlydependingonculturalbackground,withsomewantingahighdegreeofcontrolandothersprioritizingasenseofconnection.Thesedifferences,aswellasvariancesincontextorsituation,needtobeunderstoodandacknowledgedwhenplanningandimplementingAI.
?Paycloseattentiontocosts,andtrytoidentifytheapproachesmostlikelytomeetyourneeds
whilegeneratingreturnoninvestment.RunningAImodelscanbeexpensive,especiallyifexpenseslikeemployeecompensationarefactoredin.Keepingspendingincheckrequiresactivefinancial
monitoring(i.e.FinOps)andconsiderationofthingslikesmalllanguagemodels.
?MonitorAIregulationandfuturepolicydevelopments,particularlyhowtheseintersectwith
privacylaws,whichcouldhaveamassiveimpactonthedataresourcesavailableforAIprojects.MultipleUSstates,andcountriesfromCanadatoIndiaandJapan,areplanningtoenhanceorrolloutlegislationthatwillsetguardrailsaroundAIuseanddevelopment.
Thingstowatchfor(Anticipate)
?QuestionsaroundlegalliabilityandaccountabilityforthenegativeconsequencesofAIuse.AsissuessuchasAImisleadingcustomersandtheassociatedlegalchallengesemerge,authoritiesliketheEUaremovingtomakeorganizationsmoreculpable.
?ThepotentialgrowthofAIcompanions,designedtoprovideemotionalsupport,friendshiporevenintimacy.Whilethesecouldhelpcombatlonelinessandisolation,theymayalsohavetroublingimplicationsforhumaninteraction,requiringbusinessestothinkcarefullyabouttheintroductionofAIwithcompanion-likefeatures.
?Thoughtworks,Inc.AllRightsReserved.11
Strengtheningthedatavaluechain
LeveragingdataplatformsandAI
AsenterpriseadoptionofAIgainspace,there’srisingawarenessofdata’sroleasadifferentiator,andasourceofcompetitiveedge.Developingthecapabilitiestoleveragedataatspeedandscale,and
becometrulydata-driven,hasbecomeanemergingpriority.Treatingdataasaproductrepresentsoneofthemosteffectivemeanstoachievethisgoal,andthebestwaytobuildanddistributedataproductsisthroughdataplatforms.
Theprinciplesthatunderpinhigh-performancedataplatformsremainthesame—decentralization
andfederateddataownership—butnewtrendsandopportunitiesinthespacearepresenting
challengesthatorganizationsneedtobepreparedfor.Inparticular,theriseofgenerativeAI(GenAI),andtheimportanceofunstructureddatainit,requiresteamstothinkdifferentlyabouthowdatais
managedandprocessed.It’sbecomingcriticaltotreatunstructureddataasafirstclasscitizen,notasstructureddata’spoorercousin.
It’salsoimportanttonotetherisingneedforbetter—andideallyautomated—governanceofdataproducts.
Dataproducts—reusabledata
assetsengineeredtodeliver
trusteddatasetsforspecific
purposes—existindynamic
environmentswheretheneedsofteamsandthewiderorganizationareconstantlyevolving,andit’s
importantthattheyalsodevelopinawaythatdeliversvalue.
Maintainingthecapacityforcompetitiveandsustainablechangerequiresintentionaldesign
ofcohesivecentralizedanddecentralizedcapabilities.Someorganizationsarenavigatingawayfromcreatingconsensus-based‘singlesourcesoftruth’toformingintegrated‘contextualtruths’.
?Thoughtworks,Inc.AllRightsReserved.12
Strengtheningthedatavaluechain
Equallyessentialisensuringdataproductsarebuiltwithaclearlinetobusinessadoption.Platformandproductthinkingcanhelp,butthere’saneedtomovebeyondexistingparadigmsandtooling,andconsiderapplyinghuman-centereddesignformoreeffectivewaysfordatatobeconsumed
andleveragedbybusinessusers.GenAIandtrendslike‘talktodata’andgraph-baseddiscoveryarecreatingpromisingopportunitiesinthisspace,transformingthewayteamsinteractwith
andconsumedata.
“AnopenandevolvingdataandAIplatformallowsorganizationstoembraceuncertaintyinrhythmwithchangingdemands,fosteringacultureof
continuouslearning.”
NimishaAsthagiri
TechnicalPrincipalandDataMeshLeader,Thoughtworks
Signals
?Unstructureddatamovingfromasupportingtoastarringrole.
There’sgrowingfocus
onthe
useofunstructureddata(suchastext,video,imagesandaudio)tobuildbetterAItrainingmodels,whichrequiresintegratingandworkingacrossdifferenttypesofdatainasfrictionlessawayas
possible.
Startupsinthisspacearegainingsignificantinvestment
andthelikesofIBMareunveiling
newproducts
specificallydesignedtohelpenterprisesunleashthepotentialofunstructureddatainanalyticsandAI.
?EnterprisesapplyingGenAItobetterleverageunstructureddata.GenAI’sabilitytoparseandsummarizevastquantitiesoftheinformationcontainedineverythingfrommeetingrecordingstoPowerPointpresentations,andtosupportnaturallanguageinteractions,is
transformingthe
wayteamsaccessandusedata
andenhancingknowledgemanagement.However,thistrendisalsoraisingquestionsastowhetherAIandGenAIplatformsshouldbeintegratedwithotherdataplatformsorkeptdistinct,which,insomecases,isleadingtoplatformproliferation.
?Moreorganizationsgrapplingwiththechallengesoftreatingdataasaproduct,asitbecomesabusinessimperative.
Researchshowsthevastmajorityofbusinessesseeclearbenefits
fromsuchanapproach,includingimproveddatasharingandstrengtheningtheconnectionbetweendataandbusinessgoals.However,theyareconfrontingmultiplebarriersalongtheway,fromfragmented
systemstouncertaintyaboutdataprovenance.
?Therisingimportanceofdatadiscoverability.Byempoweringuserstobetterdiscover,
understandandusedataassets,datacatalogscanplayanimportantroleindataplatforms
andadataproductapproach.Buttheycanalsocausemoreissuesthantheysolveiftheiruserexperiencesorcapabilitiesarelimited,impedingthediscoveryprocess.Therecent
introduction
ofknowledgegraphs
todataplatformsisaddressingtheserisks,makingitpossibletodrawoutrelationshipsandnuancesindatathataretypicallylostintheprocessofabstraction.
?Morepressurebeingputondatateamsto
demonstrateROIandmanagecostsmoreeffectively
.
Theincreasinglyestablishedlinkbetweendatastrategyandenterpriseperformance
alsomeanstheseteamscannolongerworkinisolation;insteadstrategiesshouldbeco-developedwith,
andcreateplatformsthatdeliverresultsfor,thebusiness.
?Thoughtworks,Inc.AllRightsReserved.13
Strengtheningthedatavaluechain
Trendstowatch
e
e
s
o
t
g
n
i
n
n
i
g
e
B
42
h
t
n
O
h
e
z
i
r
o
39
40
n
o
38
41
34
30
33
29
25
32
28
24
20
w
o
19
31
23
18
13
27
9
14
n
5
35
17
12
8
37
22
36
g
n
3
21
16
11
7
26
i
e
4
e
S
15
10
6
2
1
AnticipateAnalyzeAdopt
Strategicrecommendation
Seeingnow
Adopt
1.AIasaservice
2.Automatedcompliance
3.Collaborationecosystems
4.Datacatalog
5.Datafitnessfunctions
6.Datamesh
7.Dataproductspecification
8.Developerexperienceplatforms
9.Digitaltwin
10.Edgecomputing
11.Ethicalframeworks
12.ExplainableAI
13.FinOps
14.Greencomputing
15.IntegrateddataandAIplatforms
16.Knowledgegraphs
17.MLOps
18.Modeltrainingoptimization
19.Onlinemachinelearning
20.Platformsasproducts
21.Privacyfirst
22.Privacy-enhancingtechnologies(PETs)
23.Securesoftwaredelivery
24.Smartsystemsandecosystems
25.Vectordatabases
Analyze
26.Autonomousrobots
27.Autonomousvehicles
28.Datacleanroom
29.Datamarketplaces
30.Decentralizeddataarchitectures
31.Federatedlearning
32.Semanticrepresentationaltechnologies
33.Syntheticdata
Anticipate
34.Understandableconsent
Beginningtosee
Adopt
35.AI-readydata
36.Datacontract
37.Finegraineddataaccesscontrols
Analyze
38.Datalineage
39.Integrating
unstructureddata
40.Intelligentmachinetomachinecollaboration
41.Talktodata
Anticipate
42.Decentralizedpersonaldatastores
Onthehorizon
Adopt
Analyze
Anticipate—
Strengtheningthedatavaluechain
?Thoughtworks,Inc.AllRightsReserved.14
Theopportunities
Bygettingaheadofthecurveonthislens,organizationscan:
ConsolidatedataandAIplatformcapabilities,enablingAIasaservicetoembedthis
newtechnologyandempoweruserstoleverageitsuccessfullythroughouttheorganization.SurveyshaveshownthatdespiteconcernsaboutthewiderimpactsofAI,adoptionhas
positiveimplications
forteams’collaboration,efficiencyandperformance.
UseAI(andGenAI)tobuildandmaintaindataproductsmoreeffectively.EmergingAItoolshavethepotentialtocontributetodataproductsina
numberofways
,fromsynthesizingandanalyzinginformationgarneredinend-userresearchortesting,toacceleratingcodingand
creatingdocumentationthatcansmooththepathtoeffectiveadoption.
Enhancecontrolovercosts.Withdatamanagement
oftendominatingenterprisetechnology
spending
,introducingnewtoolingtotrackdatalineageandanalyzetheimpactofcomplex
datainitiativescanhelpteamsdetermineanddemonstrateROIwithgreaterprecision.
FinOps
thinking
cancontributesignificantlytothisprocessbystrengtheningthelinksbetweentechandbusinessteamsandensuringinvestmentscomewithfinancialaccountability.
Strengthendatagovernancebyintroducingemergingbestpracticesandstructures.Theseinclude
datacleanrooms
,secure,self-containedenvironmentswhereenterprisescanblendproprietaryandthird-partydatatoimproveanalyticsandpersonalizationwhileprotecting
customerprivacy;and
datacontracts
,whichbysettinggroundrulesfordatausersand
consumers,canimprovetransparencyandtrustwhensharingdataacrossanorganization.
CombineknowledgegraphsandGenAI,whichcanenhanceunderstandingoflarge,
complexdatasetsbymappingtherelationshipsamongentitieswithinthem.Thisopens
thepossibilityofmoresemanticapproachestointegration,whichinturncanhelpcreate
abetteruserexperiencefordataconsumers.Inaddition,combiningknowledgegraphsandGenAIcanalsodeliverbetterLLMresponsesbecausewe’retakingexplicitknowledgefromknowledgegraphsandcombiningitwithimplicitstatisticalknowledgefromLLMs.
?Thoughtworks,Inc.AllRightsReserved.15
Strengtheningthedatavaluechain
Whatwe’vedone
Pfizer
Thoughtworksisworkingactivelywiththeseleadingpharmaceuticalcompaniestocreatedatameshplatformsthatenhancetheirabilitytocreateanddelivertransformativedataproducts.WithPfizer,
wehelpeddevelopcutting-edgelayeredplatformsservingAI-powereddataproducts,graph-basedsemanticinteroperability,andLLM-basedagentsthatdrivethefirm’soncologyresearch,supportingearlydrugdiscovery.
Gilead
ForGilead,wesupportedthedesignandimplementationofGileadDnA,ascalableenterprise-widedataplatformthatprovidesdataengineersandresearcherswithasecureself-serviceenvironmentfordataprocessing,completewith‘talktodata’functionality.
Strengtheningthedatavaluechain
?Thoughtworks,Inc.AllRightsReserved.16
Actionableadvice
Thingstodo(Adopt)
?Laytherightfoundationsforcreatingeffectivedataproductsbyimplementinga
datamesh
,
whichplacesdatawithinthereachofteamsthatneeditmostandreducesfrictionbetweendataproducersandconsumers.
?Automatedatagovernanceasmuchaspossibletoensurepoliciesareimplementedconsistentlyandwithminimalimpactondatausageandconsumerexperience.
Fitnessfunctions
andmore
rigorousmonitoringofservicelevelindicators(SLIs)canbegoodplacestostart.
?Starttreatingunstructureddataasafirstclasscitizenthatisgiventhesameattentionand
prominenceasstructureddatainyourdataplatform,anddrawonitspotentialtoimproveanalyticsandAImodels.
?Investinasuperiordataproductdevelopmentexperiencetoaccelerateadoption.Mapping
decisionjourneyscanhelptheorganizationbetterunderstandandtracehowtomovefromusecases
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 光學(xué)軟件測(cè)試題及答案
- 美術(shù)培訓(xùn)講座
- 2025年 阜陽(yáng)臨泉城關(guān)街道桃花源幼兒園教師招聘考試筆試試卷附答案
- 2025年 北京公務(wù)員考試筆試考試試卷附答案
- 2025年主題團(tuán)日活動(dòng)策劃與實(shí)施
- 小學(xué)交通教育課件
- 左膝關(guān)節(jié)置換術(shù)后護(hù)理
- 2025年中國(guó)墨西哥胡椒鹽行業(yè)市場(chǎng)全景分析及前景機(jī)遇研判報(bào)告
- 子宮畸形超聲分類及診斷
- 支氣管肺炎相關(guān)疾病知識(shí)
- 2025年河南省高考物理真題(解析版)
- 2025中國(guó)心肌病綜合管理指南要點(diǎn)解讀課件
- 7數(shù)滬科版期末考試卷-2024-2025學(xué)年七年級(jí)(初一)數(shù)學(xué)下冊(cè)期末考試模擬卷03
- 涼山州木里縣選聘社區(qū)工作者筆試真題2024
- 2025年中國(guó)太平洋人壽保險(xiǎn)股份有限公司勞動(dòng)合同
- 配電線路高級(jí)工練習(xí)試題附答案
- 護(hù)士N2理論考試試題及答案
- 2025年河北省中考麒麟卷地理(二)
- 第23課+和平發(fā)展合作共贏的時(shí)代潮流+課件高一歷史下學(xué)期統(tǒng)編版(2019)必修中外歷史綱要下
- 公共組織績(jī)效評(píng)估-形考任務(wù)一(占10%)-國(guó)開(ZJ)-參考資料
- GB/T 45439-2025燃?xì)鈿馄亢腿細(xì)馄块y溯源二維碼應(yīng)用技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論