




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
High-PerformanceBio-sensingICs
SinaFarajiAlamoutiRikkyMuller
ElectricalEngineeringandComputerSciencesUniversityofCalifornia,Berkeley
TechnicalReportNo.UCB/EECS-2025-15
/Pubs/TechRpts/2025/EECS-2025-15.html
May1,2025
Copyright?2025,bytheauthor(s).
Allrightsreserved.
Permissiontomakedigitalorhardcopiesofallorpartofthisworkfor
personalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesare
notmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermission.
Acknowledgement
Writingthisdissertation,IwholeheartedlybelievethatgettingaPhDisa
journeythatcomprisesofmanystepsandisaboutgoingoutsideofone'scomfortzone,makingcriticalbutwell-informeddecisionsontheroutestotake,communicatingwithpeopleinsideandoutsidethecircleofpeers,
dedicatingthetime,potentiallypullingall-nighters,andfailing,andfailingandfailing,tofinallysucceed.Navigatingthroughthisjourneywas
impossiblewithoutthehelpofaguide,soI'dliketothankRikkyforallthesupportthroughoutthistime.
I'dliketothankmanyofmycolleaguesandgroup-mateswhogenuinelymadeiteasierformetosurviveandsucceed.
Andofcourseaboveall,Iwouldn'tbeheretodayifitwasnotforthesupportofmydearGoliandmyfamily.Thankyou!
High-PerformanceBio-sensingICs
by
SinaFarajiAlamouti
Adissertationsubmittedinpartialsatisfactionofthe
requirementsforthedegreeof
DoctorofPhilosophy
in
ElectricalEngineeringandComputerSciences
inthe
GraduateDivision
ofthe
UniversityofCalifornia,Berkeley
Committeeincharge:
ProfessorRikkyMuller,ChairProfessorJanRabaey
ProfessorLydiaSohn
Fall2022
ThedissertationofSinaFarajiAlamouti,titledHigh-PerformanceBio-sensingICs,isap-proved:
Chair
Prof.RikkyMuller
Prof.JanRabaey
Prof.LydiaSohn
Date
Date
Date
01/13/2023
01/13/2023
01/13/2023
UniversityofCalifornia,Berkeley
High-PerformanceBio-sensingICs
Copyright2022
by
SinaFarajiAlamouti
1
Abstract
High-PerformanceBio-sensingICs
by
SinaFarajiAlamouti
DoctorofPhilosophyinElectricalEngineeringandComputerSciences
UniversityofCalifornia,Berkeley
ProfessorRikkyMuller,Chair
Recordingofbio-signalsfromthehumanbodyhasundergonesigni?cantimprovementsintermsofpower,speed,andformfactorinthepastdecadeduetothehelpoflow-costcom-pactIC-basedsolutions.RecentdevelopmentofthesedevicesfocusonintegratingmultiplesensorinputsinasingleIC,enhancingtherobustnessofthesensorinthefaceofchallengesinambulatorysettings,aswellasincludingsomelevelofsmartnessinthesensoroperationtoimproveitsperformance.Inthisdissertation,acoupleofnovelexamplesoftheaboveICsarepresentedthatachievestate-of-the-artperformancewhiledeliveringthetargetfunction-ality.Inthe?rstchapter,aheart-rateandoxygensaturationmonitoringICisproposedthatleveragesasparsesamplingalgorithmtosigni?cantlylowerthesensorpowerconsumptionandincreasebatterylife.Theninchapter3asensorICisdiscussedthatutilizesbody-sensorimpedanceinformationtohelpcombattheimpactofusers’motionartifactinbiopotentialrecordings.Lastly,anultra-lownoisecurrentsensorICiscoveredinchapter4thatenablesmulti-channelsensingofverysmallelectricalcurrentsinbiomedicalapplications.Theper-formanceoftheabovesensorICsarecomparedagainstpriorartsandfuturedirectionsoftheseprojectsarediscussedattheendofeachchapter.
i
Tothatwhosecompanyeasesthetroubles.
ii
Contents
Contentsii
ListofFiguresiv
ListofTablesviii
1Biosensors,GoalsandChallenges1
1.1HistoryofBiosensing 1
1.2BiosensorInterfaces 1
1.3BiosensingICs 4
2LowPowerHR&SpO2Sensing6
2.1Motivation 6
2.2Devices,Methods,andPriorArts 7
2.3SystemOverview 8
2.4SparseSamplingofPPGSignal 10
2.5CircuitImplementation 13
2.6MeasurementResults 18
2.7Summary&Comparison 26
3Electrode-SkinImpedanceMeasurement28
3.1Motivation 28
3.2SystemOverview 31
3.3ESIRecordingIC 36
3.4Measurementresults 42
3.5ComparisonwithPriorArts 44
3.6FutureWork 46
4LowNoiseCurrentSensing48
4.1Introduction 48
4.2SensorOverview 52
4.3CurrentSensorIC 56
4.4MeasurementResults 57
iii
4.5SummaryandComparison 58
4.6FutureDirections 60
4.7FinalThoughts 67
Bibliography69
ANoiseanalysis,CTIAvs.ZTIA75
BI/QDemodulationinImpedanceAcquisition78
CCurrentSensorsFigureofMerit80
C.1CTIAFoM 80
C.2GenericTIAFoM 83
C.3I-to-DconvertersFoM 85
DAnalysisofRampOversampling86
iv
ListofFigures
1.1DrysnapelectrodesfabricatedbyFloridaResearchInstrumentsandgenericwet
electrodesusefulforbiopotentialmeasurements 2
1.2AppleWatchheartrateandbloodoxygensensorsonitsbackconsistingoffour
LEDsandfourphotodiodes 3
1.3NumberofpaperspublishedinISSCCwithafocusonbiomedicalapplications
from2006to2023 5
2.1Re?ectancemodepulseoximetryandtypicalSpO2sensingICblockdiagram 7
2.2PPGsignalACandDCcomponents.RedandIRsignalsarecomputedafter
subtractingtheAMBsample,performingsystemlevelCDS 10
2.3Sparsesamplingalgorithm.Thesensortransitionstosparsemodeafterlearning
TovermultiplecycleswhereitpredictsnextPAVs 11
2.4Sparsesamplingalgorithm?ow-chart.Thesystembeginswithcontinuousmode
samplingatfs=100Hzandthentransitionstosparsemodeuponlearningthe
period,T 12
2.5SimulatedsparsemodeHRerrorforinputsinewavesatdiferentfrequenciesand
SNRs.Greenshadesshowthe±3σrangeoftheerror 13
2.6Detailedchannelblockdiagramofthechip.TheLEDdrivermoduleishighlighted
toindicatetheuseofHVdevicesthatsupportupto8Vofsupply 14
2.7Detailedtimingdiagramoftheoperationofthesensor.Everysetofsamples
consistsofthreephases,red,IR,andambient 15
2.8SchematicoftheZTIAcoreOTA.Currentreusetopologyenhancescurrente?-
ciencyandreducespower.Nestedcommon-modefeedbacknetworksstabilizethe
OTAincommonmode,enhancingCMRR 16
2.9Post-extractionsimulatedTIAbandwidthandphasemarginvs.CPar.TheOTA
showsaminimumof62。ofphasemarginovertheentireCParrange 16
2.10TheschematicoftheHVLEDdriverisshown.Theentireunitispowergateto
savepowerinbetweenthesamples 18
2.11Thedrivercurrentwaveformupto16mAwhendrivinganOLEDwithupto5.7
nFofCPar 19
2.12Chipmicrograph(a).TFEpowerbreakdownincontinuousmode.(b)System
powerreductionbetweencontinuousmodeandsparsemode.(c) 19
v
2.13Electricaltestingresults.(a)IRNspectrumfora40pFCPar.(b)IntegratedIRN
over5Hzbandwidthvs.CPar.Thereddotcorrespondstothespectrumfrom
(a).(c)ADCoutputspectrumfora2Hzsinewaveinput 21
2.14MeasuredsparsemodeHRerrorwithinputsinewavesatdiferentfrequencies
andattwolevelsofSNR.Blackcirclesshowtheaverageerrorateachrate.The
computederroristhemeanabsoluteerrorover8swindows 22
2.15Invivoveri?cationofthesensorICinbothcontinuousandsparsemodesusing
commercialsiliconPDandLEDs.ThePPGwaveformanditscorrespondingHR
andSpO2measurementsareshown 23
2.16HRandSpO2measurementsfromasetof30recordingsusingsiliconPDand
LEDs.Thereddottedlineshowsthe?tline 23
2.17Invivoveri?cationofthesensorICinbothcontinuousandsparsemodesus-
ingorganicinterfacedevices(OLEDs&OPDs).ThePPGwaveformandthe
correspondingHRandSpO2measurementsareshown 24
2.18Invivorecordingmeasurementsetup.DataistransferredtoaPCviaanFPGA.24
2.19AsummaryoftheInvivoresultswhenusing(b)commercialsilicondevicesand
(c)?exibleorganicdevices 25
2.20MissingPAVsduetomotionartifactcreatingalargechangeinthesampledPAV
values.ThebackendinitiallyexpandsW,thenrevertstothecontinuousmode
and?nallyre-gainslockonthePPG 25
3.1EEGsignalanditsdiferentfrequencybands.AnetworkofEEGrecording
scalpelectrodesareshownontherightinaphotoadaptedfromanarticleon
MayoClinic.[18] 29
3.2SamplerecordingofEar-EEGusingdryin-earelectrodeswherethesubjectchews
anappleinthemiddleoftherecording.Largein-bandmotionartifactduetothe
subjectchewingisobservedcompletelydisruptingthemeasurement 30
3.3(a)TheESIandEarEEGrecordingsystemdiagramshowingtwoelectrodesand
thereadoutIC.(b)TheESIofdryin-earelectrodesfrom[29] 32
3.4SignalFlowdiagramofthesensorreadout.Thestimulationblockcreatesadif-ferentialACcurrentthatterminatesovertheESIinducingavoltagesignalatthestimulationfrequencyband.Thissignalisthensummedwiththedesiredbiopo-tentialsignal,heretheEEG,andisthenacquiredviaasharedfrontendADC.Inthebackend,thedecimatedADCoutputismultipliedbyin-phaseandquadra-turecomponentsofthestimulationsignalallowingfortheimpedancemagnitude
|ZES(j!)|andphase6ZES(j!)tobeextracted...................33
3.5Simplesquarewavedriveanddemodulationhardware.(a)Thedriveisimple-
mentedusingtwocurrentsourcesandabutter?yswitchtogglingatfZ.(b)The
digitaldemodulationisassimpleasasign?ipinphasewiththedemodulation
signal 35
3.6Errorsinducedintheabsolutevalueoftheimpedanceduetohigherorderhar-
monicsampling.3rd-harmonic-freedrivereducesthiserrorbymorethan50% 36
vi
3.73rdHarmonicfreedrivevs.squarewavedrive.(a)Thetimedomainwaveforms
areshownforfZ=1.6kHz.(b)Thespectrumsassociatedwith“a” 36
3.8Theschematicandtimingdiagramoftheactivestimulationunit.Thetiming
signalsaregeneratedon-chipusingthereferencemasterclock 38
3.9Thespectrumsofthestimulationcurrentsourcesat10nAofdrivecurrent.Blueandorangecurvesshowstheanalyticalandsimulatedspectraofthedrivecurrentwithoutchoppingwhere?ickernoisedominatesthenoise?ooroverEEGband-
width.Theblackcurverepresentsthedrivecurrentspectrumwithchoppingat
8kHzthatresultsinasigni?cantlyreducedcurrentnoisedensityovertheEEG
band 39
3.10OutputImpedanceoftheactivestimulationunit.Theunitmaintainsa>1GΩ
outputimpedanceacrosstheentireEEGbandwidthandevenupto3kHz 39
3.11Passivestimulationunitblockdiagram.Enableswitchescanfullydisengagethis
unitfromtheinputs,providingisolationaswellasincreasingtheinputimpedance
whenusingactivemode 40
3.12Comparisonofoutputimpedancebetweenactiveandpassivestimulationunits 41
3.13ChipmicrographofEarEEGICandthepowerbreakdownofthestimulationunit.42
3.14Thelayoutofthestimulationblock.Theareaisdominatedbytheareaofthe
passiveelements,CACandRN,P 43
3.15Oscilloscopecapturesofstimulationwaveformsover100kΩtestresistances.(a)
showsthetimedomainsquarewavestimulationwaveformat2kHz.(b)shows
thespectrumof“a”witha3rdharmonicamplitude~10dBbelowthemain
harmonic.(c)presentsthetimedomain3rdharmonicfreewaveformat2kHz.
(d)exhibitsthespectrumof“c”withthe3rdharmonicamplitudeattenuatedby
>60dB.........................................44
3.16Resistiveimpedancemeasurementresultsforarangeof~1kΩ-2MΩof
diferentialtestresistance.(a)Twopointcalibrationisperformedonthevalues
andthe?t-lineisplottedinsolidred.(b)Theμ/σofthemeasurementindB
signifyingamaximum~68dBofSNR 45
3.17EfectiveimpedancenoisespectrumoftheESIreadoutat17nAofstimulation
amplitude 45
3.18(a)Theelectrodemodelconsistingofseriesresistance(RS),doublelayercapac-itance(CDL)andtheparallelresistance(RCT).Thevaluesofeachelementineverymodelispresentedinthetable.ThesevaluesaremeasuredwithabenchtopLCRmeter.(b)Theacquiredimpedance(solidline)oftheelectrodemodelvs.
theLCRmeterreportedimpedances(dashedline).................46
4.1Applicationsforlownoisecurrentsensors.(a)Recordingofionchannelcurrentsviapatch-clampsinneurons.(b)Siliconnano-porespassingvariousbio-moleculessuchasproteins.(c)Capturing?uorescenceactivityofstimulatedneuronsinbrain.(d)Characterizationofcellsmechanicalphenotypesviamicro?uidicchan-
nels...........................................49
vii
4.2Readoutchannelblock-diagram(a)andtimingdiagram(b) 53
4.3Oversamplingoftheintegrationramp.Slopeofthe?tlinerepresentsthenet
inputsignalduringtheintegrationphase 55
4.4SensorICfullchipblockdiagram 56
4.5ThecoreOTAoftheCTIAblock 57
4.6SensorICchipmicrograph(a)andchannelpowerbreakdown(b) 58
4.7Inputreferrednoisespectrumat5kS/sand38MΩoftransimpedancegain.
Slightincreaseat>500HzisduetoTIAloopgaindrop 59
4.8MeasuredINLandDNLoftheoverallchannelusingrampinput.Lessthan100
ppmworstcaseINLandlessthan10ppmofworstcaseDNLaremeasured 59
4.9Measuredspectrumoftonetestwith16nAPPsinewaveinputat8Hz 60
4.10Minimumrequiredsupplycurrentvs.inputreferrednoise?oor.Typicalvalues
areusedfromthedesigntoachieverealistictakeaways 62
4.11Signal?owgraphfora?rstorderDSMcurrentconverter.Thenoisesourcesand
theirtransferfunctionsarehighlightedinred 63
4.12Inputreferredspectrumofa4MS/s1st-order?-Σconverterwithandwithout
theDACnoise.Asseen,theDACnoisecompletelydominatestheinputreferred
noiseofthefrontendatlowerfrequencies 64
4.13Circuitblockdiagramofthenoise-shapingRZI-DAC 66
4.14NS-RZI-DAC200nAoutputcurrenttimedomainwaveform(a)andpowerspec-
trumdensity(b) 67
4.15Signal?owgraphofthemodi?ed?-ΣcurrentconverterusingnoiseshapingRZ
I-DACashighlighted 68
A.1Asimpli?eddiagramoftheZTIA(a)initsnoisesources(b) 75
A.2TheinputreferredstandarddeviationofasinglesampletakeninZTIAandCTIA
schemesversusCPar 77
C.1SimpleCTIAdiagramwithimportantcomponentsshownfortheanalysis 80
C.2TheplotofFoMTIAandFoMSforworkspublishedinISSCCtodate 85
D.1Themagnituderesponseoftheline-?ttingtransferfunctionfora?xintegration
timeofTint=100μs 88
viii
ListofTables
2.1ComparisonwithpriorartsofPPGandSpO2sensors 27
3.1ComparisonwithpriorartsofESI&BioZrecordingICs 47
4.1Summaryofrequirementsforcurrentsensingapplications 52
4.2ComparisonwithpriorartsofcurrentsensingICs 61
ix
TableofAcronyms
Acronym
Description
Acronym
Description
ADC
AnalogtoDigitalConverter
LUT
Look-UpTable
AMB
AmbientEfect
MA
MotionArtifact
CMRR
CommonModeRejectionRatio
MRI
MagneticResonanceImaging
CTDSM
ContinuousTimeDSM
NS
NoiseShaping
DAC
DigitaltoAnalogConverter
OCT
OpticalCoherenceTomography
DAQ
DataAcquisitionUnit
OTA
OperationalTransconductanceAmpli?er
DBE
DigitalBack-End
PAV
PeaksandValleys
DNL
DiferentialNon-Linearity
PCB
PrintedCircuitBoard
DR
DynamicRange
PD
Photodetector(orPhotodiode)
DSM
Delta-SigmaModulator
PM
PhaseMargin
ECG
Electrocardiography
PPG
Photoplethysmography
EEG
Electroencephalography
PSD
PowerSpectralDensity
ESI
ElectrodeSkinInterface
RMS
Root-Mean-Square
FoM
FigureofMerit
RST
Reset
GEVI
GeneticallyEncodedVoltageIndicator
RZ
Return-to-Zero
HR
HeartRate
SAR
SuccessiveApproximationRegister
INL
IntegralNon-Linearity
SFDR
SpuriousFreeDynamicRange
IR
Infra-Red
SNDR
SignaltoNoiseandDistortionRatio
IRN
InputReferredNoise
SNR
SignaltoNoiseRatio
LED
LightEmittingDiode
TFE
TransimpedanceFrontend
LFP
LocalFieldPotentials
THD
TotalHarmonicDistortion
LSB
LeastSigni?cantBit
TIA
TransimpedanceAmpli?er
x
Acknowledgments
Writingthisdissertation,InowwholeheartedlybelievethatstudyingaPhDisajourneythatcomprisesofmanystepsandelementsandisaboutgoingoutsideofone’scomfortzone,spendingalotoftimereadingandlearningaboutthingsthatmayormaynotbehelpfulingettingtothe?naldestinationofaproject,makingcriticalbutwell-informeddecisionsontheroutestotake,communicatingwithpeopleinsideandoutsidethecircleofpeers,dedicatingthetime,potentiallypullingall-nighters,andfailing,andfailingandfailing,to?nallysucceed.Undoubtedly,navigatingthroughsuchajourneyisimpossiblewithoutthehelpofaguide,soI’dliketothankRikkyforallthesupportthroughoutthistime.
I’dliketothankmanyofmycolleaguesandgroup-mateswhogenuinelymadeiteasierformetosurviveandsucceed.
Andofcourseaboveall,Iwouldn’tbeheretodayifitwasnotforthesupportofmydearGoliandmyfamily.Thankyou!
1
Chapter1
Biosensors,GoalsandChallenges
1.1HistoryofBiosensing
Therecordedhistoryofsensingsignalsfromthebodydatesbackto2600BCwhereGilgamesh?rstdescribedandrecognizedthedeathofhisdearfriendbynotbeingabletofeelhisheartbeat,“Itouchhisheartbutitdoesnotbeatatall”hesaid[14].Butasitappears,ittookhumanbeingsmillenniatoimproveonthemethodsandaddtothesignalsandinformationrecordedfromthebody.In1625whenSantorioofVeniceandGalileopublishedtheirbodythermometer,itwasoneofthe?rstattemptstotrytouseanapparatusforrecordingofavitalsign[56].Afterabout80years,Floyer’sreportonmeasuringthetimingofpulsesusingapendulumwaspublishedin1707[71].Thistrendcontinueduntilin1903whenthe?rstEKGmachineswereintroduced[7].Lateronin1950s,electricalactivityofsingleneuronsinbrainofmammalswasmeasuredusingwires[67].Later,theadventofpatch-clampelectrophysiologyin1970sprovidedalotofinsightintothesynaptictransmissionofneurons[60].Inthe1980sto1990s,siliconmicroelectrodearraysbecamethemaintoolininvestigatingthecommunicationofneurongroups[16]andeventodaytheystillformthestandardmethodinrecordingofneuralactivity.
Recordingofsuchsignalshasalwaysbeenaimedtoprovideinformationabouthowcertainsystemsandorgansinthebodyoperate,assistdiagnosisofmanyphysiologicalandneuro-logicaldiseases,enhancetheprognosisofvariousmedicationsandtreatments,aswellastodevelopamorethoroughunderstandingoftheunderlyingmechanismsforvariousillnesses.
1.2BiosensorInterfaces
Anyapparatususedtoacquireabiosignalneedstointerfacewithoneormultiplepartsofthebody.Dependingonthesignalofinterest,therecordingsite,andthesignalquality,thetypeofinterfacecanchange.Thereisawidespectrumofwaysforadevicetointeractwiththehumanbody.FrommechanicalcontacttothebodysuchasinsensingofECGusingpiezoelectricmaterials[23],electricalconnectionsuchasinEKGmachines,optical
2
CHAPTER1.BIOSENSORS,GOALSANDCHALLENGES
DryElectrodes
WetElectrodes
Figure1.1:DrysnapelectrodesfabricatedbyFloridaResearchInstrumentsandgenericwet
electrodesusefulforbiopotentialmeasurements.
interfacesasinpulse-oximeters,magneticandradio-frequencyreadoutsuchasMRI,high-intensityparticlespenetratingthebodyasinX-rayimaging,tothebiochemicalanalysisofbodygasor?uidssuchashumanexhales[15].Thefocusofthisdissertationishoweveronlyonelectricalandopticalinterfacesandthefollowingsectionsreviewthesetwointerfacesmorethoroughly.
ElectricalInterfaces
RecordingofbiopotentialssuchasElectrocardiogram(ECG),Electroencephalogram(EEG),Electromyogram(EMG),andneuralsignalssuchaslocal?eldpotentials(LFP)andspikesrequireselectricalcontactbetweenthesensorandtherecordingsite.Thiselectricalconnec-tionoccursviaconductiveelectrodescontactingtheskin,tissue,ornerveendpoints.Theadvantageofelectricalcontactisthatitprovidesthemostdirectaccesstotherecordingtargetandasaresultitgenerallyachievesahighersignalquality.Fig.1.1showstwosetsofdryandwetelectrodesusefulforbiopotentialrecording.Ontheotherhand,thereareafewchallengesinmakingelectricalcontacttothetargets.Forone,suchacontactre-quiresphysicalaccesstothetargetpointandifthetargetresideswithinthehumanbody,surgicalproceduresfollowedbymaintaininganopenincisionisrequired.Moreover,thefor-eignbodyresponsegenerallydegradestherecordedsignalqualityovertimeandnecessitatesre-implantation.Toaddressthis,wirelesslyoperatingimplantshavebeenproposedintheliteraturetominimizetissuescarringandextendthesensorlifetimeinthebody[20,3].However,thischallengebyitselfisenoughtorestrictelectricalreadouttoonlyapplicationswheretheinformationisotherwiseinaccessiblesuchasrecordingofdeepbrainneuralsignals.Anotherchallengeinusingelectrodesforconnectionistoachievealow-impedancecontact
3
CHAPTER1.BIOSENSORS,GOALSANDCHALLENGES
Figure1.2:AppleWatchheartrateandbloodoxygensensorsonitsbackconsistingoffour
LEDsandfourphotodiodes.
especiallywhencontactingadrysurfacesuchasskin.Thiswillcauseadegradationinthesignalquality,highersusceptibilitytocommonmodenoiseandinterference,aswellasanelevatedinterfacenoiselevel.Chapter3focusesonanambulatoryear-EEGrecordingdevicethatdirectlydealswiththisproblemanddiscussesapotentialsolutiontothischallenge.
OpticalInterfaces
Oneotherapproachincollectingbiosignalsistheuseoflightpropagation,attenuation,orphaseshiftwhenpassingthroughthebiologicalmedium.Opticalapproacheshaverecentlyfoundalotofinterestduetotheirpotentialinprovidingaccesstoinformationwithinrel-ativelydeeperanatomicalareaswithouttheneedforincisionsortissuedisplacement.Fig.
1.2showsAppleWatchseries7opticalsensorsthatcaptureuser’sheartrateandbloodoxygenationlevelusingacirculararrayoffourLEDsandfourphotodiodes.Oneofthemostcommonlyusedopticalmethodsinretrievingbiologicalsignalsisthemeasurementofpulsebyrecordingthetimedomainchangesinthevenoustissuevolumeinresponsetothepul-satileblood?ow.Thetechnique,knownasphotoplethysmographyorPPGinshort,detectsapulsatilecomponentinthetransmittedorre?ectedlightfromthetissuewhoseperiodicitycorrespondstothecardiaccycle.Amajorbene?tofthistechniqueisthatitprovidesoneoftheleastinvasivemethodsofacquiringthepulse.ThetopicofPPGanditssensorswillbediscussedingreaterdetailinchapter2.Thereareplentyofotheropticalapplicationsthatextractinformationfromthebody.Opticalcoherencetomography(OCT)forexampleprovidesmicrometerresolution3Dscansofthehumantissuewithdetailinformationabouteverylayerusingalowcoherencelight.Thistechniquehasbeenusedforreconstructionof
4
CHAPTER1.BIOSENSORS,GOALSANDCHALLENGES
3Dscansofretinalcells[68].Anotherapplicationhastodowithmonitoringofneuralactiv-itiesusingopticalmethods,a?eldknownasoptogenetics[82].Manyindividuallyselectedneuronsaresimultaneouslyexcitedusingaspatiallightmodulatorandtheresponsecanberecordedusinghighsensitivityimagers.Chapter4focusesonarecordingdevicethatcanserveasanimplantableimagertocapture?uorescentactivityofneurons.
Oneofthechallengesofopticalmethodshoweveristhatsincethelightneedstopropagatebackandforthintothetissue,itgenerallyrequiresahigherpowerlevelatthesourcewhenprovidingthedesiredsig
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位正規(guī)化管理課件下載
- 健康營(yíng)養(yǎng)小專家課件下載
- 海南省06中考數(shù)學(xué)試卷
- 邯鄲小學(xué)高年級(jí)數(shù)學(xué)試卷
- 《建筑工程施工組織設(shè)計(jì)》課程標(biāo)準(zhǔn)編制調(diào)研報(bào)告
- 2025年中國(guó)聯(lián)苯雙脂片行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2025年中國(guó)隔音耳罩市場(chǎng)運(yùn)行態(tài)勢(shì)及行業(yè)發(fā)展前景預(yù)測(cè)報(bào)告
- 2025年中國(guó)泵殼鑄件行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2025年黑龍江省齊齊哈爾市、黑河、大興安嶺三地聯(lián)考初中學(xué)業(yè)水平考試中考物理真題試卷(中考真題+答案)
- 2024年二元醇項(xiàng)目項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2024年GINA哮喘防治指南修訂解讀課件
- 高等教育研究項(xiàng)目指南(3篇模板)
- (高清版)JTGT 3654-2022 公路裝配式混凝土橋梁施工技術(shù)規(guī)范
- 《通信原理》樊昌信曹麗娜編著第六版課件
- 2024年煤礦電氣失爆專題培訓(xùn)課件
- 中國(guó)人工智能應(yīng)用現(xiàn)狀及未來發(fā)展趨勢(shì)分析
- 多重耐藥菌感染預(yù)防與控制
- 半結(jié)構(gòu)化結(jié)構(gòu)化面試題目
- 供應(yīng)鏈綠色化與環(huán)保的培訓(xùn)材料
- 枕式換熱器行業(yè)分析
- 2023年農(nóng)村土地承包經(jīng)營(yíng)權(quán)確權(quán)登記頒證項(xiàng)目作業(yè)指導(dǎo)書
評(píng)論
0/150
提交評(píng)論