高性能生物傳感集成電路 High-Performance Bio-sensing ICs_第1頁(yè)
高性能生物傳感集成電路 High-Performance Bio-sensing ICs_第2頁(yè)
高性能生物傳感集成電路 High-Performance Bio-sensing ICs_第3頁(yè)
高性能生物傳感集成電路 High-Performance Bio-sensing ICs_第4頁(yè)
高性能生物傳感集成電路 High-Performance Bio-sensing ICs_第5頁(yè)
已閱讀5頁(yè),還剩182頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

High-PerformanceBio-sensingICs

SinaFarajiAlamoutiRikkyMuller

ElectricalEngineeringandComputerSciencesUniversityofCalifornia,Berkeley

TechnicalReportNo.UCB/EECS-2025-15

/Pubs/TechRpts/2025/EECS-2025-15.html

May1,2025

Copyright?2025,bytheauthor(s).

Allrightsreserved.

Permissiontomakedigitalorhardcopiesofallorpartofthisworkfor

personalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesare

notmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermission.

Acknowledgement

Writingthisdissertation,IwholeheartedlybelievethatgettingaPhDisa

journeythatcomprisesofmanystepsandisaboutgoingoutsideofone'scomfortzone,makingcriticalbutwell-informeddecisionsontheroutestotake,communicatingwithpeopleinsideandoutsidethecircleofpeers,

dedicatingthetime,potentiallypullingall-nighters,andfailing,andfailingandfailing,tofinallysucceed.Navigatingthroughthisjourneywas

impossiblewithoutthehelpofaguide,soI'dliketothankRikkyforallthesupportthroughoutthistime.

I'dliketothankmanyofmycolleaguesandgroup-mateswhogenuinelymadeiteasierformetosurviveandsucceed.

Andofcourseaboveall,Iwouldn'tbeheretodayifitwasnotforthesupportofmydearGoliandmyfamily.Thankyou!

High-PerformanceBio-sensingICs

by

SinaFarajiAlamouti

Adissertationsubmittedinpartialsatisfactionofthe

requirementsforthedegreeof

DoctorofPhilosophy

in

ElectricalEngineeringandComputerSciences

inthe

GraduateDivision

ofthe

UniversityofCalifornia,Berkeley

Committeeincharge:

ProfessorRikkyMuller,ChairProfessorJanRabaey

ProfessorLydiaSohn

Fall2022

ThedissertationofSinaFarajiAlamouti,titledHigh-PerformanceBio-sensingICs,isap-proved:

Chair

Prof.RikkyMuller

Prof.JanRabaey

Prof.LydiaSohn

Date

Date

Date

01/13/2023

01/13/2023

01/13/2023

UniversityofCalifornia,Berkeley

High-PerformanceBio-sensingICs

Copyright2022

by

SinaFarajiAlamouti

1

Abstract

High-PerformanceBio-sensingICs

by

SinaFarajiAlamouti

DoctorofPhilosophyinElectricalEngineeringandComputerSciences

UniversityofCalifornia,Berkeley

ProfessorRikkyMuller,Chair

Recordingofbio-signalsfromthehumanbodyhasundergonesigni?cantimprovementsintermsofpower,speed,andformfactorinthepastdecadeduetothehelpoflow-costcom-pactIC-basedsolutions.RecentdevelopmentofthesedevicesfocusonintegratingmultiplesensorinputsinasingleIC,enhancingtherobustnessofthesensorinthefaceofchallengesinambulatorysettings,aswellasincludingsomelevelofsmartnessinthesensoroperationtoimproveitsperformance.Inthisdissertation,acoupleofnovelexamplesoftheaboveICsarepresentedthatachievestate-of-the-artperformancewhiledeliveringthetargetfunction-ality.Inthe?rstchapter,aheart-rateandoxygensaturationmonitoringICisproposedthatleveragesasparsesamplingalgorithmtosigni?cantlylowerthesensorpowerconsumptionandincreasebatterylife.Theninchapter3asensorICisdiscussedthatutilizesbody-sensorimpedanceinformationtohelpcombattheimpactofusers’motionartifactinbiopotentialrecordings.Lastly,anultra-lownoisecurrentsensorICiscoveredinchapter4thatenablesmulti-channelsensingofverysmallelectricalcurrentsinbiomedicalapplications.Theper-formanceoftheabovesensorICsarecomparedagainstpriorartsandfuturedirectionsoftheseprojectsarediscussedattheendofeachchapter.

i

Tothatwhosecompanyeasesthetroubles.

ii

Contents

Contentsii

ListofFiguresiv

ListofTablesviii

1Biosensors,GoalsandChallenges1

1.1HistoryofBiosensing 1

1.2BiosensorInterfaces 1

1.3BiosensingICs 4

2LowPowerHR&SpO2Sensing6

2.1Motivation 6

2.2Devices,Methods,andPriorArts 7

2.3SystemOverview 8

2.4SparseSamplingofPPGSignal 10

2.5CircuitImplementation 13

2.6MeasurementResults 18

2.7Summary&Comparison 26

3Electrode-SkinImpedanceMeasurement28

3.1Motivation 28

3.2SystemOverview 31

3.3ESIRecordingIC 36

3.4Measurementresults 42

3.5ComparisonwithPriorArts 44

3.6FutureWork 46

4LowNoiseCurrentSensing48

4.1Introduction 48

4.2SensorOverview 52

4.3CurrentSensorIC 56

4.4MeasurementResults 57

iii

4.5SummaryandComparison 58

4.6FutureDirections 60

4.7FinalThoughts 67

Bibliography69

ANoiseanalysis,CTIAvs.ZTIA75

BI/QDemodulationinImpedanceAcquisition78

CCurrentSensorsFigureofMerit80

C.1CTIAFoM 80

C.2GenericTIAFoM 83

C.3I-to-DconvertersFoM 85

DAnalysisofRampOversampling86

iv

ListofFigures

1.1DrysnapelectrodesfabricatedbyFloridaResearchInstrumentsandgenericwet

electrodesusefulforbiopotentialmeasurements 2

1.2AppleWatchheartrateandbloodoxygensensorsonitsbackconsistingoffour

LEDsandfourphotodiodes 3

1.3NumberofpaperspublishedinISSCCwithafocusonbiomedicalapplications

from2006to2023 5

2.1Re?ectancemodepulseoximetryandtypicalSpO2sensingICblockdiagram 7

2.2PPGsignalACandDCcomponents.RedandIRsignalsarecomputedafter

subtractingtheAMBsample,performingsystemlevelCDS 10

2.3Sparsesamplingalgorithm.Thesensortransitionstosparsemodeafterlearning

TovermultiplecycleswhereitpredictsnextPAVs 11

2.4Sparsesamplingalgorithm?ow-chart.Thesystembeginswithcontinuousmode

samplingatfs=100Hzandthentransitionstosparsemodeuponlearningthe

period,T 12

2.5SimulatedsparsemodeHRerrorforinputsinewavesatdiferentfrequenciesand

SNRs.Greenshadesshowthe±3σrangeoftheerror 13

2.6Detailedchannelblockdiagramofthechip.TheLEDdrivermoduleishighlighted

toindicatetheuseofHVdevicesthatsupportupto8Vofsupply 14

2.7Detailedtimingdiagramoftheoperationofthesensor.Everysetofsamples

consistsofthreephases,red,IR,andambient 15

2.8SchematicoftheZTIAcoreOTA.Currentreusetopologyenhancescurrente?-

ciencyandreducespower.Nestedcommon-modefeedbacknetworksstabilizethe

OTAincommonmode,enhancingCMRR 16

2.9Post-extractionsimulatedTIAbandwidthandphasemarginvs.CPar.TheOTA

showsaminimumof62。ofphasemarginovertheentireCParrange 16

2.10TheschematicoftheHVLEDdriverisshown.Theentireunitispowergateto

savepowerinbetweenthesamples 18

2.11Thedrivercurrentwaveformupto16mAwhendrivinganOLEDwithupto5.7

nFofCPar 19

2.12Chipmicrograph(a).TFEpowerbreakdownincontinuousmode.(b)System

powerreductionbetweencontinuousmodeandsparsemode.(c) 19

v

2.13Electricaltestingresults.(a)IRNspectrumfora40pFCPar.(b)IntegratedIRN

over5Hzbandwidthvs.CPar.Thereddotcorrespondstothespectrumfrom

(a).(c)ADCoutputspectrumfora2Hzsinewaveinput 21

2.14MeasuredsparsemodeHRerrorwithinputsinewavesatdiferentfrequencies

andattwolevelsofSNR.Blackcirclesshowtheaverageerrorateachrate.The

computederroristhemeanabsoluteerrorover8swindows 22

2.15Invivoveri?cationofthesensorICinbothcontinuousandsparsemodesusing

commercialsiliconPDandLEDs.ThePPGwaveformanditscorrespondingHR

andSpO2measurementsareshown 23

2.16HRandSpO2measurementsfromasetof30recordingsusingsiliconPDand

LEDs.Thereddottedlineshowsthe?tline 23

2.17Invivoveri?cationofthesensorICinbothcontinuousandsparsemodesus-

ingorganicinterfacedevices(OLEDs&OPDs).ThePPGwaveformandthe

correspondingHRandSpO2measurementsareshown 24

2.18Invivorecordingmeasurementsetup.DataistransferredtoaPCviaanFPGA.24

2.19AsummaryoftheInvivoresultswhenusing(b)commercialsilicondevicesand

(c)?exibleorganicdevices 25

2.20MissingPAVsduetomotionartifactcreatingalargechangeinthesampledPAV

values.ThebackendinitiallyexpandsW,thenrevertstothecontinuousmode

and?nallyre-gainslockonthePPG 25

3.1EEGsignalanditsdiferentfrequencybands.AnetworkofEEGrecording

scalpelectrodesareshownontherightinaphotoadaptedfromanarticleon

MayoClinic.[18] 29

3.2SamplerecordingofEar-EEGusingdryin-earelectrodeswherethesubjectchews

anappleinthemiddleoftherecording.Largein-bandmotionartifactduetothe

subjectchewingisobservedcompletelydisruptingthemeasurement 30

3.3(a)TheESIandEarEEGrecordingsystemdiagramshowingtwoelectrodesand

thereadoutIC.(b)TheESIofdryin-earelectrodesfrom[29] 32

3.4SignalFlowdiagramofthesensorreadout.Thestimulationblockcreatesadif-ferentialACcurrentthatterminatesovertheESIinducingavoltagesignalatthestimulationfrequencyband.Thissignalisthensummedwiththedesiredbiopo-tentialsignal,heretheEEG,andisthenacquiredviaasharedfrontendADC.Inthebackend,thedecimatedADCoutputismultipliedbyin-phaseandquadra-turecomponentsofthestimulationsignalallowingfortheimpedancemagnitude

|ZES(j!)|andphase6ZES(j!)tobeextracted...................33

3.5Simplesquarewavedriveanddemodulationhardware.(a)Thedriveisimple-

mentedusingtwocurrentsourcesandabutter?yswitchtogglingatfZ.(b)The

digitaldemodulationisassimpleasasign?ipinphasewiththedemodulation

signal 35

3.6Errorsinducedintheabsolutevalueoftheimpedanceduetohigherorderhar-

monicsampling.3rd-harmonic-freedrivereducesthiserrorbymorethan50% 36

vi

3.73rdHarmonicfreedrivevs.squarewavedrive.(a)Thetimedomainwaveforms

areshownforfZ=1.6kHz.(b)Thespectrumsassociatedwith“a” 36

3.8Theschematicandtimingdiagramoftheactivestimulationunit.Thetiming

signalsaregeneratedon-chipusingthereferencemasterclock 38

3.9Thespectrumsofthestimulationcurrentsourcesat10nAofdrivecurrent.Blueandorangecurvesshowstheanalyticalandsimulatedspectraofthedrivecurrentwithoutchoppingwhere?ickernoisedominatesthenoise?ooroverEEGband-

width.Theblackcurverepresentsthedrivecurrentspectrumwithchoppingat

8kHzthatresultsinasigni?cantlyreducedcurrentnoisedensityovertheEEG

band 39

3.10OutputImpedanceoftheactivestimulationunit.Theunitmaintainsa>1GΩ

outputimpedanceacrosstheentireEEGbandwidthandevenupto3kHz 39

3.11Passivestimulationunitblockdiagram.Enableswitchescanfullydisengagethis

unitfromtheinputs,providingisolationaswellasincreasingtheinputimpedance

whenusingactivemode 40

3.12Comparisonofoutputimpedancebetweenactiveandpassivestimulationunits 41

3.13ChipmicrographofEarEEGICandthepowerbreakdownofthestimulationunit.42

3.14Thelayoutofthestimulationblock.Theareaisdominatedbytheareaofthe

passiveelements,CACandRN,P 43

3.15Oscilloscopecapturesofstimulationwaveformsover100kΩtestresistances.(a)

showsthetimedomainsquarewavestimulationwaveformat2kHz.(b)shows

thespectrumof“a”witha3rdharmonicamplitude~10dBbelowthemain

harmonic.(c)presentsthetimedomain3rdharmonicfreewaveformat2kHz.

(d)exhibitsthespectrumof“c”withthe3rdharmonicamplitudeattenuatedby

>60dB.........................................44

3.16Resistiveimpedancemeasurementresultsforarangeof~1kΩ-2MΩof

diferentialtestresistance.(a)Twopointcalibrationisperformedonthevalues

andthe?t-lineisplottedinsolidred.(b)Theμ/σofthemeasurementindB

signifyingamaximum~68dBofSNR 45

3.17EfectiveimpedancenoisespectrumoftheESIreadoutat17nAofstimulation

amplitude 45

3.18(a)Theelectrodemodelconsistingofseriesresistance(RS),doublelayercapac-itance(CDL)andtheparallelresistance(RCT).Thevaluesofeachelementineverymodelispresentedinthetable.ThesevaluesaremeasuredwithabenchtopLCRmeter.(b)Theacquiredimpedance(solidline)oftheelectrodemodelvs.

theLCRmeterreportedimpedances(dashedline).................46

4.1Applicationsforlownoisecurrentsensors.(a)Recordingofionchannelcurrentsviapatch-clampsinneurons.(b)Siliconnano-porespassingvariousbio-moleculessuchasproteins.(c)Capturing?uorescenceactivityofstimulatedneuronsinbrain.(d)Characterizationofcellsmechanicalphenotypesviamicro?uidicchan-

nels...........................................49

vii

4.2Readoutchannelblock-diagram(a)andtimingdiagram(b) 53

4.3Oversamplingoftheintegrationramp.Slopeofthe?tlinerepresentsthenet

inputsignalduringtheintegrationphase 55

4.4SensorICfullchipblockdiagram 56

4.5ThecoreOTAoftheCTIAblock 57

4.6SensorICchipmicrograph(a)andchannelpowerbreakdown(b) 58

4.7Inputreferrednoisespectrumat5kS/sand38MΩoftransimpedancegain.

Slightincreaseat>500HzisduetoTIAloopgaindrop 59

4.8MeasuredINLandDNLoftheoverallchannelusingrampinput.Lessthan100

ppmworstcaseINLandlessthan10ppmofworstcaseDNLaremeasured 59

4.9Measuredspectrumoftonetestwith16nAPPsinewaveinputat8Hz 60

4.10Minimumrequiredsupplycurrentvs.inputreferrednoise?oor.Typicalvalues

areusedfromthedesigntoachieverealistictakeaways 62

4.11Signal?owgraphfora?rstorderDSMcurrentconverter.Thenoisesourcesand

theirtransferfunctionsarehighlightedinred 63

4.12Inputreferredspectrumofa4MS/s1st-order?-Σconverterwithandwithout

theDACnoise.Asseen,theDACnoisecompletelydominatestheinputreferred

noiseofthefrontendatlowerfrequencies 64

4.13Circuitblockdiagramofthenoise-shapingRZI-DAC 66

4.14NS-RZI-DAC200nAoutputcurrenttimedomainwaveform(a)andpowerspec-

trumdensity(b) 67

4.15Signal?owgraphofthemodi?ed?-ΣcurrentconverterusingnoiseshapingRZ

I-DACashighlighted 68

A.1Asimpli?eddiagramoftheZTIA(a)initsnoisesources(b) 75

A.2TheinputreferredstandarddeviationofasinglesampletakeninZTIAandCTIA

schemesversusCPar 77

C.1SimpleCTIAdiagramwithimportantcomponentsshownfortheanalysis 80

C.2TheplotofFoMTIAandFoMSforworkspublishedinISSCCtodate 85

D.1Themagnituderesponseoftheline-?ttingtransferfunctionfora?xintegration

timeofTint=100μs 88

viii

ListofTables

2.1ComparisonwithpriorartsofPPGandSpO2sensors 27

3.1ComparisonwithpriorartsofESI&BioZrecordingICs 47

4.1Summaryofrequirementsforcurrentsensingapplications 52

4.2ComparisonwithpriorartsofcurrentsensingICs 61

ix

TableofAcronyms

Acronym

Description

Acronym

Description

ADC

AnalogtoDigitalConverter

LUT

Look-UpTable

AMB

AmbientEfect

MA

MotionArtifact

CMRR

CommonModeRejectionRatio

MRI

MagneticResonanceImaging

CTDSM

ContinuousTimeDSM

NS

NoiseShaping

DAC

DigitaltoAnalogConverter

OCT

OpticalCoherenceTomography

DAQ

DataAcquisitionUnit

OTA

OperationalTransconductanceAmpli?er

DBE

DigitalBack-End

PAV

PeaksandValleys

DNL

DiferentialNon-Linearity

PCB

PrintedCircuitBoard

DR

DynamicRange

PD

Photodetector(orPhotodiode)

DSM

Delta-SigmaModulator

PM

PhaseMargin

ECG

Electrocardiography

PPG

Photoplethysmography

EEG

Electroencephalography

PSD

PowerSpectralDensity

ESI

ElectrodeSkinInterface

RMS

Root-Mean-Square

FoM

FigureofMerit

RST

Reset

GEVI

GeneticallyEncodedVoltageIndicator

RZ

Return-to-Zero

HR

HeartRate

SAR

SuccessiveApproximationRegister

INL

IntegralNon-Linearity

SFDR

SpuriousFreeDynamicRange

IR

Infra-Red

SNDR

SignaltoNoiseandDistortionRatio

IRN

InputReferredNoise

SNR

SignaltoNoiseRatio

LED

LightEmittingDiode

TFE

TransimpedanceFrontend

LFP

LocalFieldPotentials

THD

TotalHarmonicDistortion

LSB

LeastSigni?cantBit

TIA

TransimpedanceAmpli?er

x

Acknowledgments

Writingthisdissertation,InowwholeheartedlybelievethatstudyingaPhDisajourneythatcomprisesofmanystepsandelementsandisaboutgoingoutsideofone’scomfortzone,spendingalotoftimereadingandlearningaboutthingsthatmayormaynotbehelpfulingettingtothe?naldestinationofaproject,makingcriticalbutwell-informeddecisionsontheroutestotake,communicatingwithpeopleinsideandoutsidethecircleofpeers,dedicatingthetime,potentiallypullingall-nighters,andfailing,andfailingandfailing,to?nallysucceed.Undoubtedly,navigatingthroughsuchajourneyisimpossiblewithoutthehelpofaguide,soI’dliketothankRikkyforallthesupportthroughoutthistime.

I’dliketothankmanyofmycolleaguesandgroup-mateswhogenuinelymadeiteasierformetosurviveandsucceed.

Andofcourseaboveall,Iwouldn’tbeheretodayifitwasnotforthesupportofmydearGoliandmyfamily.Thankyou!

1

Chapter1

Biosensors,GoalsandChallenges

1.1HistoryofBiosensing

Therecordedhistoryofsensingsignalsfromthebodydatesbackto2600BCwhereGilgamesh?rstdescribedandrecognizedthedeathofhisdearfriendbynotbeingabletofeelhisheartbeat,“Itouchhisheartbutitdoesnotbeatatall”hesaid[14].Butasitappears,ittookhumanbeingsmillenniatoimproveonthemethodsandaddtothesignalsandinformationrecordedfromthebody.In1625whenSantorioofVeniceandGalileopublishedtheirbodythermometer,itwasoneofthe?rstattemptstotrytouseanapparatusforrecordingofavitalsign[56].Afterabout80years,Floyer’sreportonmeasuringthetimingofpulsesusingapendulumwaspublishedin1707[71].Thistrendcontinueduntilin1903whenthe?rstEKGmachineswereintroduced[7].Lateronin1950s,electricalactivityofsingleneuronsinbrainofmammalswasmeasuredusingwires[67].Later,theadventofpatch-clampelectrophysiologyin1970sprovidedalotofinsightintothesynaptictransmissionofneurons[60].Inthe1980sto1990s,siliconmicroelectrodearraysbecamethemaintoolininvestigatingthecommunicationofneurongroups[16]andeventodaytheystillformthestandardmethodinrecordingofneuralactivity.

Recordingofsuchsignalshasalwaysbeenaimedtoprovideinformationabouthowcertainsystemsandorgansinthebodyoperate,assistdiagnosisofmanyphysiologicalandneuro-logicaldiseases,enhancetheprognosisofvariousmedicationsandtreatments,aswellastodevelopamorethoroughunderstandingoftheunderlyingmechanismsforvariousillnesses.

1.2BiosensorInterfaces

Anyapparatususedtoacquireabiosignalneedstointerfacewithoneormultiplepartsofthebody.Dependingonthesignalofinterest,therecordingsite,andthesignalquality,thetypeofinterfacecanchange.Thereisawidespectrumofwaysforadevicetointeractwiththehumanbody.FrommechanicalcontacttothebodysuchasinsensingofECGusingpiezoelectricmaterials[23],electricalconnectionsuchasinEKGmachines,optical

2

CHAPTER1.BIOSENSORS,GOALSANDCHALLENGES

DryElectrodes

WetElectrodes

Figure1.1:DrysnapelectrodesfabricatedbyFloridaResearchInstrumentsandgenericwet

electrodesusefulforbiopotentialmeasurements.

interfacesasinpulse-oximeters,magneticandradio-frequencyreadoutsuchasMRI,high-intensityparticlespenetratingthebodyasinX-rayimaging,tothebiochemicalanalysisofbodygasor?uidssuchashumanexhales[15].Thefocusofthisdissertationishoweveronlyonelectricalandopticalinterfacesandthefollowingsectionsreviewthesetwointerfacesmorethoroughly.

ElectricalInterfaces

RecordingofbiopotentialssuchasElectrocardiogram(ECG),Electroencephalogram(EEG),Electromyogram(EMG),andneuralsignalssuchaslocal?eldpotentials(LFP)andspikesrequireselectricalcontactbetweenthesensorandtherecordingsite.Thiselectricalconnec-tionoccursviaconductiveelectrodescontactingtheskin,tissue,ornerveendpoints.Theadvantageofelectricalcontactisthatitprovidesthemostdirectaccesstotherecordingtargetandasaresultitgenerallyachievesahighersignalquality.Fig.1.1showstwosetsofdryandwetelectrodesusefulforbiopotentialrecording.Ontheotherhand,thereareafewchallengesinmakingelectricalcontacttothetargets.Forone,suchacontactre-quiresphysicalaccesstothetargetpointandifthetargetresideswithinthehumanbody,surgicalproceduresfollowedbymaintaininganopenincisionisrequired.Moreover,thefor-eignbodyresponsegenerallydegradestherecordedsignalqualityovertimeandnecessitatesre-implantation.Toaddressthis,wirelesslyoperatingimplantshavebeenproposedintheliteraturetominimizetissuescarringandextendthesensorlifetimeinthebody[20,3].However,thischallengebyitselfisenoughtorestrictelectricalreadouttoonlyapplicationswheretheinformationisotherwiseinaccessiblesuchasrecordingofdeepbrainneuralsignals.Anotherchallengeinusingelectrodesforconnectionistoachievealow-impedancecontact

3

CHAPTER1.BIOSENSORS,GOALSANDCHALLENGES

Figure1.2:AppleWatchheartrateandbloodoxygensensorsonitsbackconsistingoffour

LEDsandfourphotodiodes.

especiallywhencontactingadrysurfacesuchasskin.Thiswillcauseadegradationinthesignalquality,highersusceptibilitytocommonmodenoiseandinterference,aswellasanelevatedinterfacenoiselevel.Chapter3focusesonanambulatoryear-EEGrecordingdevicethatdirectlydealswiththisproblemanddiscussesapotentialsolutiontothischallenge.

OpticalInterfaces

Oneotherapproachincollectingbiosignalsistheuseoflightpropagation,attenuation,orphaseshiftwhenpassingthroughthebiologicalmedium.Opticalapproacheshaverecentlyfoundalotofinterestduetotheirpotentialinprovidingaccesstoinformationwithinrel-ativelydeeperanatomicalareaswithouttheneedforincisionsortissuedisplacement.Fig.

1.2showsAppleWatchseries7opticalsensorsthatcaptureuser’sheartrateandbloodoxygenationlevelusingacirculararrayoffourLEDsandfourphotodiodes.Oneofthemostcommonlyusedopticalmethodsinretrievingbiologicalsignalsisthemeasurementofpulsebyrecordingthetimedomainchangesinthevenoustissuevolumeinresponsetothepul-satileblood?ow.Thetechnique,knownasphotoplethysmographyorPPGinshort,detectsapulsatilecomponentinthetransmittedorre?ectedlightfromthetissuewhoseperiodicitycorrespondstothecardiaccycle.Amajorbene?tofthistechniqueisthatitprovidesoneoftheleastinvasivemethodsofacquiringthepulse.ThetopicofPPGanditssensorswillbediscussedingreaterdetailinchapter2.Thereareplentyofotheropticalapplicationsthatextractinformationfromthebody.Opticalcoherencetomography(OCT)forexampleprovidesmicrometerresolution3Dscansofthehumantissuewithdetailinformationabouteverylayerusingalowcoherencelight.Thistechniquehasbeenusedforreconstructionof

4

CHAPTER1.BIOSENSORS,GOALSANDCHALLENGES

3Dscansofretinalcells[68].Anotherapplicationhastodowithmonitoringofneuralactiv-itiesusingopticalmethods,a?eldknownasoptogenetics[82].Manyindividuallyselectedneuronsaresimultaneouslyexcitedusingaspatiallightmodulatorandtheresponsecanberecordedusinghighsensitivityimagers.Chapter4focusesonarecordingdevicethatcanserveasanimplantableimagertocapture?uorescentactivityofneurons.

Oneofthechallengesofopticalmethodshoweveristhatsincethelightneedstopropagatebackandforthintothetissue,itgenerallyrequiresahigherpowerlevelatthesourcewhenprovidingthedesiredsig

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論