




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、1,Digital Logic Design and ApplicationLecture #08,Combinational-Circuit Synthesis,UESTC, Spring 2011,2,4.3 Combinational-Circuit Synthesis,Design(設計): from informal description to logic diagram 從非正式描述(如文字描述)到邏輯電路圖 Synthesis(綜合): from formal description to logic diagram 從正式描述(標準表達)到邏輯電路圖,Synthesis,Mi
2、nimization or transformation Circuit Manipulations, obtain the logic circuit select devices,4.3 Combinational-Circuit Synthesis,定義輸入輸出信號 標準表達 Truth table Logic function/expression 文字描述,3,如,4.3.1 警報電路的描述,4.3.1 Circuit Description and design,4,1. Circuit Description: Inputs: Red, Yellow, Green corresp
3、ond to the state of three lights light1, dark0 Output: Fault normal state0, abnormal state1,Example: Design a circuit to check the state of traffic lights.,5,Example: Design a circuit to check the state of traffic lights.,1 1 1 1 1,1. Circuit Description: Inputs: Red, Yellow, Green correspond to the
4、 state of three lights light1, dark0 Output: Fault normal state0, abnormal state1,6,1. Circuit Description,2. Write logic expression and minimization,= RYG + RY + RG + YG,F =A,B,C(1,2,4 ) = (R+Y+G)(R+Y+G)(R+Y+G),( ),= (RYG) (RY) (RG) (YG),3. Circuit Manipulation four AND gates A+A=1,Y = AB + AB + BC
5、 + BC,= AB + AB(C+C) + BC +BC(A+A),= AB + ABC + ABC + BC + ABC + ABC,= AB,+ AC,+ BC,Y = AB + AB + BC + BC,= AB + AB + AC + BC + BC + AC,= AB + AC + BC,可以添加 AC,結果不唯一,但代價相同,16,4.3.4 Karnaugh Maps,a graphical representation of a logic functions truth table,卡諾圖是變形的真值表 每一個單元都對應于一個最小項(最大項),Gray Code,17,4.
6、3.4 Karnaugh Maps,F = (A,B,C)(0,3,5,6),1-cell minterm 0-cell maxterm,18,F1 = (A,B,C) (1,3,4,7) F2(A,B,C) = AC + BCD + B,Example: Draw the K-maps for the following functions,Plot 1s corresponding to miniterms of function Plot 0s corresponding to maxterms of function,19,4.3.5 Minimizing Sum of Product
7、s,Adjacent(邏輯相鄰) A cell and its immediately adjacent neighbors differ only in one variable. Combining adjacent cells,i literals can be eliminated from 2i adjacent cells 合并2i 個單元可消去i個變量。,T10 組合律 項X + 項X = 項,用Gray Code保證卡諾圖相鄰單元的邏輯相鄰性,XYZ+XYZ=YZ,XY,20,one literal can be eliminated from two adjacent 1-c
8、ells,XYZ + XYZ = YZ,21,ABCD,= ABD,+ ABCD,+ ABCD,+ ABCD,+ ABD,= BD,Two literals can be eliminated from four adjacent cells.,22,A,D,消掉既能為 0 也能為 1 的變量 保留始終為0或始終為1的變量,Three literals can be eliminated from eight adjacent cells.,T10 組合律 項X + 項X = 項,23,Example: F = A,B,C,D ( 0, 2, 3, 5, 7, 8, 10, 11, 13 ),
9、1. Drawing map,2. Circling adjacent cells area of circle: as large as possible number of circle: as few as possible cells can be reused,3. Write terms,F(A,B,C,D) = BD + BC + BCD + ABD,BD,BC,4.3.5 Minimizing Sum of Products,24,問題:圈組時是否需要考慮順序? 先圈大的還是小的?,4.3.5 Minimizing Sum of Products,25,4.3.5 Minimi
10、zing Sum of Products Terminologies for 2-level simplification,P implies F(P隱含F(xiàn)), F includes P ( F covers P F覆蓋P),prime implicant (主蘊涵項) circled sets and corresponding product terms A minimal sum is a sum of prime implicants. ( Prime-Implicant Theorem )最小和是主蘊涵項 之和。 The sum of all the prime implicants
11、 of a logic functions is called the complete sum. 所有主主蘊涵項 之和稱為完全和。,P1(A,B,C) = ABC P2(A,B,C) = BC F1(A,B,C) = AB + BC,P = A,B,C (1,3,6) F = A,B,C (1,3,5,6,7),26,Terminologies,Distinguished 1-cell (奇異“1”單元) An input combination that is covered by only one prime implicant.,Essential prime implicant 質主
12、蘊涵項 A prime implicant that covers one or more distinguished 1-cell.,無法被重復“圈”的1,27,Terminologies,Distinguished 1-cell (奇異“1”單元),Begin with distinguished 1-cell,Essential prime implicant 質主蘊涵項,28,Example: F = A,B,C,D ( 0, 1, 2, 3, 4, 5, 7, 14, 15 ),1. Drawing map,2. Circling adjacent cells,circling es
13、sential prime implicant,circling other 1-cells,3. Write terms, one per circled set,F(A,B,C,D) = AB + AC + AD + ABC,marking distinguished 1-cell,Eliminating the variable which is 0 as well as 1 Keeping the variable which is always 0 or 1,29,For some logic functions, the minimal expressions may be dif
14、ferent, but the minimal forms are equally costly. 最小和可能不唯一,但代價相同,30,No distinguished 1-cell and essential prime implicant,Dont repeat circle!,In each circle, there is at least ONE NEW 1-cell. 每個圈至少含有一個未被圈過的“1”單元。,31,Approach for K-map algorithm,Draw map Combine adjacent cells Mark distinguished 1-ce
15、lls Circle essential prime implicant, then circle other cell Cells can be reused, but each circle must have new cell. Ensure the areas of circle as large as possible Ensure the number of circle as few as possible Write the minimal sum Eliminating the variable which is 0 as well as 1 Keeping the vari
16、able which is always 0 or 1 Sum-of-Product: 1variable; 0(variable),How to minimize product of sums,Minimizing Products of Sums,32,0 variable 1 (variable),A+B,A+C,F = (A+B+C+D)(A+C)(A+B),4.3.6 Other minimization problems,33,4.3.6 Other minimization problems,“Dont-Care” Input Combinations(無關項處理) Outpu
17、t doesnt matter for certain inputs combinations Dont care about behavior under these inputs (out-of-range) F = A,B,C,D(1,2,3,5,7) + d(10,11,12,13,14,15),F = AD + BC,AD,BC,34,4.3.6 Other minimization problems,F1 = A,B,C (0,1,3) F2 = A,B,C (3,6,7),F1 = AB + AC,F2 = AB + BC,Multiple-Output Minimization
18、(多輸出最小化),35,Multiple-Output Minimization,F1 = AB + ABC,F2 = AB + ABC,36,A 5-variable Karnaugh Map,16 17 19 18,20 21 23 22,28 29 31 30,24 25 27 26,How to minimize?,37,F = A,B,C,D,E(0,1,2,3,4,5,10,11,14,20,21,24,25,26,27,28,29,30),F = + + + +,ABD,ACD,ACD,ABC,BDE,Task: 4.59 (b),38,A 6-variable K-Map,39,Real-World Logic Design,Lots more than 6 inputs - cant use Karnaugh maps Design co
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 IEC 60086-4:2025 CMV EN Primary batteries - Part 4: Safety of lithium batteries
- 菊花種植收購事宜合同
- 基于大數(shù)據(jù)驅動的企業(yè)轉型升級合作協(xié)議
- 企業(yè)廣告牌制作合同
- 塔吊租賃協(xié)議樣本
- 環(huán)境監(jiān)測與評估合同
- 防雷裝置檢測技術服務合同
- 場地轉讓合同協(xié)議書
- 房地產項目合作協(xié)議
- 自動化生產線改造項目合作合同
- 光纜線路施工安全協(xié)議書范本
- 《我國國有企業(yè)股權融資效率實證研究》相關概念及國內外文獻綜述2600字
- 2025年湖南交通職業(yè)技術學院高職單招職業(yè)適應性測試近5年??及鎱⒖碱}庫含答案解析
- 成本合約規(guī)劃培訓
- 交通法規(guī)教育課件
- 小學校長任期五年工作目標(2024年-2029年)
- 2022-2024年浙江中考英語試題匯編:閱讀理解(說明文)教師版
- 小學生思政課課件
- 2016屆高三備考建議
- 北師大版六年級下冊數(shù)學全冊表格式教案
- 2021年阿里巴巴全球數(shù)學競賽預選賽試題及參考答案
評論
0/150
提交評論