FFS(飛焦點(diǎn)技術(shù)).ppt_第1頁(yè)
FFS(飛焦點(diǎn)技術(shù)).ppt_第2頁(yè)
FFS(飛焦點(diǎn)技術(shù)).ppt_第3頁(yè)
FFS(飛焦點(diǎn)技術(shù)).ppt_第4頁(yè)
FFS(飛焦點(diǎn)技術(shù)).ppt_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Flying Focal Spot,(FFS),飛焦點(diǎn)技術(shù),Sensation 64 Scanner: How it works Thomas Flohr, Siemens Medical Solutions The SOMATOM Sensation 64 makes use of a periodic motion of the focal spot in the longitudinal direction (z-flying focal spot) to double the number of simultaneously acquired slices with the goal of improved longitudinal resolution and elimination of spiral artifacts. By permanent electromagnetic deflection of the electron beam in the X-ray tube the focal spot is wobbled between two different positions on the anode plate. Due to the anode angle of 7 this translates into a motion both in the radial direction and in the z-direction. The radial motion is a side-effect which is taken care of by the image reconstruction algorithms. The amplitude of the periodic z-motion is adjusted such that two subsequent readings are shifted by half a collimated slice width in the patients longitudinal direction, see below.,從兩個(gè)不同的角度對(duì)每一個(gè)解剖細(xì)節(jié)進(jìn)行不間斷的重疊數(shù)據(jù)采集,獲得雙倍的采樣,FFS,Therefore, the measurement rays of two subsequent readings with collimated slice-width 0.6 mm interleave in the z-direction, and every two 32-slice readings are combined to one 64-slice projection with a sampling distance of 0.3 mm. With this technique, 64 overlapping 0.6 mm slices per rotation are acquired. The z-coverage is 32x0.6 mm = 19.2 mm, and the sampling scheme is identical to that of a 64x0.3 mm detector. This fine sampling is the reason for the improved spatial resolution and the elimination of spiral artifacts. The improved sampling is obtained at any spiral pitch. Hence, resolution is improved and spiral artifacts are eliminated at any pitch. The improved sampling is furthermore not restricted to the iso-center, but is maintained in a wide range of the scan field of view (SFOV), see the figure above. This is a major difference to conventional approaches which attempt to improve longitudinal sampling by the choice of optimized small pitch values (so-called “High Quality“ pitches), so that data acquired in different rotations interleave in the z-direction. In this case, a sampling distance of half the collimated slice width can be achieved close to iso-center only, see below, and improved resolution will only be achieved close to iso-center, which is a clinical drawback. Free selection of the pitch is not possible, and the user is restricted to special modes with low table feed and low volume coverage.,32x0.6 mm=64x0.3,The clinical benefits of optimized z-sampling with the z-flying focal spot technique are two-fold: firstly, longitudinal resolution is improved at any pitch and in a wide range of the SFOV by establishing narrow, well-defined slice sensitivity profiles (SSPs). Secondly, spiral artifacts are suppressed at any pitch. Typical spiral artifacts present as hyper- or hypo-dense “windmill“ structures surrounding z-inhomogeneous high-contrast objects such as bones, which rotate when scrolling through a stack of images. Using conventional MDCT scan and reconstruction techniques spiral artifacts can be reduced by either decreasing the pitch and/or increasing the reconstruction slice width relative to the collimation. Both approaches aim at improving the spiral sampling along the z-direction, but at the expense of reduced table feed and/or reduced spatial resolution. Using conventional MDCT systems, demanding applications such as neuro scanning need low pitch protocols to reduce artifacts and to improve image quality. CTAs of the carotid arteries and the circle of Willis for instance require a careful optimization of the spiral pitch to ensure sufficient volume coverage speed on the one hand and avoid intolerable spiral artifacts on the other. The z-flying focal spot technique maintains a low artifact level up to high pitch values even for critical applications, thus increasing the maximum volume coverage speed that is clinically useful.,成 功 應(yīng) 用,To sum up: The z-flying focal spot technique improves longitudinal resolution and eliminates windmill artifacts at any pitch. Even the most demanding clinical applications can be performed at maximum pitch without degradation of image quality or resolution. This is a major difference to conventional CT-systems which claim to have a larger detector coverage but are restricted in table feed (“High Quality“ Modes), if good image qua

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論