


全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)定理【圓,三角形】1 費(fèi)馬點(diǎn):定理1等邊三角形外接圓上一點(diǎn),到該三角形較近兩頂點(diǎn)距離之和等于到另一頂點(diǎn)的距離;不在等邊三角形外接圓上的點(diǎn),到該三角形兩頂點(diǎn)距離之和大于到另一點(diǎn)的距離定理2 三角形每一內(nèi)角都小于120時(shí),在三角形內(nèi)必存在一點(diǎn),它對三條邊所張的角都是120,該點(diǎn)到三頂點(diǎn)距離和達(dá)到最小,稱為“費(fèi)馬點(diǎn)”,當(dāng)三角形有一內(nèi)角不小于120時(shí),此角的頂點(diǎn)即為費(fèi)馬點(diǎn)2 拿破侖三角形:在任意ABC的外側(cè),分別作等邊ABD、BCE、CAF,則AE、AB、CD三線共點(diǎn),并且AEBFCD,這個(gè)命題稱為拿破侖定理 以ABC的三條邊分別向外作等邊ABD、BCE、CAF,它們的外接圓C1 、A1 、B1的圓心構(gòu)成的外拿破侖的三角形,C1 、A1 、B1三圓共點(diǎn),外拿破侖三角形是一個(gè)等邊三角形;ABC的三條邊分別向ABC的內(nèi)側(cè)作等邊ABD、BCE、CAF,它們的外接圓C2 、A2 、B2的圓心構(gòu)成的內(nèi)拿破侖三角形,C2 、A2 、B2三圓共點(diǎn),內(nèi)拿破侖三角形也是一個(gè)等邊三角形這兩個(gè)拿破侖三角形還具有相同的中心 3 九點(diǎn)圓(Nine point round或歐拉圓或費(fèi)爾巴赫圓):三角形中,三邊中心、從各頂點(diǎn)向其對邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個(gè)點(diǎn)在同一個(gè)圓上,九點(diǎn)圓具有許多有趣的性質(zhì),例如: (1)三角形的九點(diǎn)圓的半徑是三角形的外接圓半徑之半; (2)九點(diǎn)圓的圓心在歐拉線上,且恰為垂心與外心連線的中點(diǎn); (3)三角形的九點(diǎn)圓與三角形的內(nèi)切圓,三個(gè)旁切圓均相切費(fèi)爾巴哈定理4 歐拉(Euler)線:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上5 歐拉(Euler)公式:設(shè)三角形的外接圓半徑為R,內(nèi)切圓半徑為r,外心與內(nèi)心的距離為d,則d2=R22Rr6 銳角三角形的外接圓半徑與內(nèi)切圓半徑的和等于外心到各邊距離的和7 重心:三角形的三條中線交于一點(diǎn),并且各中線被這個(gè)點(diǎn)分成2:1的兩部分;重心性質(zhì):(1)設(shè)G為ABC的重心,連結(jié)AG并延長交BC于D,則D為BC的中點(diǎn),則;(2)設(shè)G為ABC的重心,則;(3)設(shè)G為ABC的重心,過G作DEBC交AB于D,交AC于E,過G作PFAC交AB于P,交BC于F,過G作HKAB交AC于K,交BC于H,則;(4)設(shè)G為ABC的重心,則;(P為ABC內(nèi)任意一點(diǎn));到三角形三頂點(diǎn)距離的平方和最小的點(diǎn)是重心,即最??; 三角形內(nèi)到三邊距離之積最大的點(diǎn)是重心;反之亦然(即滿足上述條件之一,則G為ABC的重心)8 垂心:三角形的三條高線的交點(diǎn);垂心性質(zhì):(1)三角形任一頂點(diǎn)到垂心的距離,等于外心到對邊的距離的2倍;(2)垂心H關(guān)于ABC的三邊的對稱點(diǎn),均在ABC的外接圓上;(3)ABC的垂心為H,則ABC,ABH,BCH,ACH的外接圓是等圓;(4)設(shè)O,H分別為ABC的外心和垂心,則9 內(nèi)心:三角形的三條角分線的交點(diǎn)內(nèi)接圓圓心,即內(nèi)心到三角形各邊距離相等; 內(nèi)心性質(zhì):(1)設(shè)I為ABC的內(nèi)心,則I到ABC三邊的距離相等,反之亦然;(2)設(shè)I為ABC的內(nèi)心,則;(3)三角形一內(nèi)角平分線與其外接圓的交點(diǎn)到另兩頂點(diǎn)的距離與到內(nèi)心的距離相等;反之,若平分線交ABC外接圓于點(diǎn)K,I為線段AK上的點(diǎn)且滿足KI=KB,則I為ABC的內(nèi)心;(4)設(shè)I為ABC的內(nèi)心, 平分線交BC于D,交ABC外接圓于點(diǎn)K,則;(5)設(shè)I為ABC的內(nèi)心,I在上的射影分別為,內(nèi)切圓半徑為,令,則;10 外心:三角形的三條中垂線的交點(diǎn)外接圓圓心,即外心到三角形各頂點(diǎn)距離相等;外心性質(zhì):(1)外心到三角形各頂點(diǎn)距離相等;(2)設(shè)O為ABC的外心,則或;(3);(4)銳角三角形的外心到三邊的距離之和等于其內(nèi)切圓與外接圓半徑之和11 旁心:一內(nèi)角平分線與兩外角平分線交點(diǎn)旁切圓圓心;設(shè)ABC的三邊令,分別與外側(cè)相切的旁切圓圓心記為,其半徑分別記為旁心性質(zhì):(1)(對于頂角B,C也有類似的式子);(2);(3)設(shè)的連線交ABC的外接圓于D,則(對于有同樣的結(jié)論);(4)ABC是IAIBIC的垂足三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年開學(xué)第一課安全主題班會教案范例
- 2025年玻璃花盆架項(xiàng)目可行性研究報(bào)告
- 2025年猴頭菇多糖項(xiàng)目可行性研究報(bào)告
- 2025年牛皮紙繩機(jī)項(xiàng)目可行性研究報(bào)告
- 石家莊財(cái)經(jīng)職業(yè)學(xué)院《時(shí)尚健美操》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江省淮北市2025年三年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 上海市青浦區(qū)達(dá)標(biāo)名校2025年初三5月份考試物理試題含解析
- 三亞城市職業(yè)學(xué)院《醫(yī)學(xué)實(shí)驗(yàn)基本技術(shù)與設(shè)備》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東交通學(xué)院《大數(shù)據(jù)基礎(chǔ)實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川省遂寧市重點(diǎn)中學(xué)2024-2025學(xué)年初三畢業(yè)班聯(lián)考生物試題試卷含解析
- 老年衰弱護(hù)理課件
- 中建工期施工進(jìn)度計(jì)劃管理專項(xiàng)培訓(xùn)
- 以舞育人:舞蹈教學(xué)的德育功能及其實(shí)現(xiàn)
- 植物標(biāo)本的采集和制作
- 愚公移山英文 -中國故事英文版課件
- 酒店住宿水單模板1
- 保利幕墻工程技術(shù)標(biāo)述標(biāo)課件
- 體育50米快速跑教案9篇
- 大跨結(jié)構(gòu)的經(jīng)典之作-鳥巢論文
- 訂單延期交貨的相關(guān)處理規(guī)定
- 有機(jī)溶劑作業(yè)場所個(gè)人職業(yè)病防護(hù)用品使用規(guī)范
評論
0/150
提交評論