高考數(shù)學(xué) 玩轉(zhuǎn)壓軸題 專題4.3 立體幾何的動態(tài)問題(1).doc_第1頁
高考數(shù)學(xué) 玩轉(zhuǎn)壓軸題 專題4.3 立體幾何的動態(tài)問題(1).doc_第2頁
高考數(shù)學(xué) 玩轉(zhuǎn)壓軸題 專題4.3 立體幾何的動態(tài)問題(1).doc_第3頁
高考數(shù)學(xué) 玩轉(zhuǎn)壓軸題 專題4.3 立體幾何的動態(tài)問題(1).doc_第4頁
高考數(shù)學(xué) 玩轉(zhuǎn)壓軸題 專題4.3 立體幾何的動態(tài)問題(1).doc_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余22頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題4.3 立體幾何的動態(tài)問題一方法綜述立體幾何的動態(tài)問題是高考的熱點(diǎn),問題中的“不確定性”與“動感性”元素往往成為學(xué)生思考與求解問題的思維障礙,使考題的破解更具策略性、挑戰(zhàn)性與創(chuàng)新性。一般立體動態(tài)問題形成的原因有動點(diǎn)變化、平面圖形的翻折、幾何體的平移和旋轉(zhuǎn)以及投影與截面問題,由此引發(fā)的常見題型為動點(diǎn)軌跡、角度與距離的計算、面積與體積的計算、探索性問題以及有關(guān)幾何量的最值求解等。此類題的求解并沒有一定的模式與固定的套路可以沿用,很多學(xué)生一籌莫展,無法形成清晰的分析思路,導(dǎo)致該題成為學(xué)生的易失分點(diǎn)。究其原因,是因為學(xué)生缺乏相關(guān)學(xué)科素養(yǎng)和解決問題的策略造成的。動態(tài)立體幾何題在變化過程中總蘊(yùn)含著某些不變的因素,因此要認(rèn)真分析其變化特點(diǎn),尋找不變的靜態(tài)因素,從靜態(tài)因素中,找到解決問題的突破口。求解動態(tài)范圍的選擇、填空題,有時應(yīng)把這類動態(tài)的變化過程充分地展現(xiàn)出來,通過動態(tài)思維,觀察它的變化規(guī)律,找到兩個極端位置,即用特殊法求解范圍。對于探究存在問題或動態(tài)范圍(最值)問題,用定性分析比較難或繁時,可以引進(jìn)參數(shù),把動態(tài)問題劃歸為靜態(tài)問題。具體地,可通過構(gòu)建方程、函數(shù)或不等式等進(jìn)行定量計算,以算促證。二解題策略類型一 立體幾何中動態(tài)問題中的角度問題例1.【2015高考四川,理14】如圖,四邊形abcd和adpq均為正方形,它們所在的平面互相垂直,動點(diǎn)m在線段pq上,e、f分別為ab、bc的中點(diǎn)。設(shè)異面直線em與af所成的角為,則的最大值為.【答案】,當(dāng)時取等號.所以,當(dāng)時,取得最大值.【指點(diǎn)迷津】空間的角的問題,一種方法,代數(shù)法,只要便于建立空間直角坐標(biāo)系均可建立空間直角坐標(biāo)系,然后利用公式求解;另一種方法,幾何法,幾何問題要結(jié)合圖形分析何時取得最大(?。┲怠.?dāng)點(diǎn)m在p處時,em與af所成角為直角,此時余弦值為0(最?。?dāng)m點(diǎn)向左移動時,em與af所成角逐漸變小時,點(diǎn)m到達(dá)點(diǎn)q時,角最小,余弦值最大?!九e一反三】1、【2014四川,理8】如圖,在正方體中,點(diǎn)為線段的中點(diǎn).設(shè)點(diǎn)在線段上,直線與平面所成的角為,則的取值范圍是()a b c d【答案】b ,.又直線與平面所成的角小于等于,而為鈍角,所以的范圍為,選b. 2、【2017屆內(nèi)蒙古包頭市十校高三聯(lián)考】在正方體中,點(diǎn)在線段上運(yùn)動,則異面直線與所成角的取值范圍是( )a. b. c. d. 【答案】d 3、【2017屆江西鷹潭一中高三理上學(xué)期月考五】如圖,已知平面,、是直線上的兩點(diǎn),、是平面內(nèi)的兩點(diǎn),且, ,是平面上的一動點(diǎn),且直線,與平面所成角相等,則二面角的余弦值的最小值是( )a b c d【答案】c類型二 立體幾何中動態(tài)問題中的距離問題【例2】如圖所示,在空間直角坐標(biāo)系中,是坐標(biāo)原點(diǎn),有一棱長為的正方體,和分別是體對角線和棱上的動點(diǎn),則的最小值為( )a. b. c. d. 【答案】b【指點(diǎn)迷津】求兩點(diǎn)間的距離或其最值。一種方法,可建立坐標(biāo)系,設(shè)點(diǎn)的坐標(biāo),用兩點(diǎn)間距離公式寫出距離,轉(zhuǎn)化為求函數(shù)的最值問題;另一種方法,幾何法,根據(jù)幾何圖形的特點(diǎn),尋找那兩點(diǎn)間的距離最大(?。?,求其值。【舉一反三】1、【2016屆湖南省長沙市長郡中學(xué)高三下第六次月考】如圖,已知正方體棱長為4,點(diǎn)在棱上,且,在側(cè)面內(nèi)作邊長為1的正方形,是側(cè)面內(nèi)一動點(diǎn),且點(diǎn)到平面距離等于線段的長,則當(dāng)點(diǎn)運(yùn)動時,的最小值是( )a21 b22 c23 d25【答案】b【解析】在上取點(diǎn),使得,則面,連結(jié),則在平面上,以所在直線為軸,以所在直線為軸,由題意可知,點(diǎn)軌跡為拋物線,其方程為,點(diǎn)坐標(biāo)為,設(shè),則(其中,當(dāng)時,故2、如圖,在棱長為2的正方體abcd-a1b1c1d1中,e為bc的中點(diǎn),點(diǎn)p在線段d1e上,點(diǎn)p到直線cc1的距離的最小值為_.【答案】 3、【2017屆浙江省溫州市高三第二次模擬考試】如圖,在三棱錐中,平面平面,與均為等腰直角三角形,且,點(diǎn)是線段上的動點(diǎn),若線段上存在點(diǎn),使得異面直線與成的角,則線段長的取值范圍是( ) a. b. c. d. 【答案】b類型三 立體幾何中動態(tài)問題中的面積、體積問題【例3】在棱長為6的正方體中,是中點(diǎn),點(diǎn)是面所在的平面內(nèi)的動點(diǎn),且滿足,則三棱錐的體積最大值是( )a. 36 b. c. 24 d. 【答案】b【指點(diǎn)迷津】求幾何體體積的最值,先觀察幾何圖形三棱錐,其底面的面積為不變的幾何量,求點(diǎn)p到平面bcd的距離的最大值,選擇公式,可求最值?!九e一反三】1、【2017屆山東棗莊市高三理上學(xué)期末】 九章九術(shù)是我國古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早一千多年.例如塹堵指底面為直角三角形,且側(cè)棱垂直于底面的三棱柱;陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,若,當(dāng)陽馬體積最大時,則塹堵的體積為( )a b c. d【答案】c2、【黑龍江省哈爾濱市第六中學(xué)2017屆高三下學(xué)期第一次模擬】已知矩形中, , 分別是上兩動點(diǎn),且,把四邊形沿折起,使平面平面,若折得的幾何體的體積最大,則該幾何體外接球的體積為( ) a. b. c. d. 【答案】d 3、【2015新課標(biāo)2文10】已知是球的球面上兩點(diǎn),為該球面上的動點(diǎn).若三棱錐體積的最大值為36,則球的表面積為()a. b. c. d. 【答案】c 【解析】類型四 立體幾何中動態(tài)問題中的軌跡問題【例4】如圖直三棱柱中,為邊長為2的等邊三角形,點(diǎn)、分別是邊、的中點(diǎn),動點(diǎn)在四邊形內(nèi)部運(yùn)動,并且始終有平面,則動點(diǎn)的軌跡長度為( )a. b. c. d. 【答案】d【解析】因為分別為的中點(diǎn),所以,所以平面,平面,又因為,所以平面平面,要使平面,則平面,所以點(diǎn)的軌跡為線段,點(diǎn)的軌跡長度為.故本題正確答案為.【指點(diǎn)迷津】由已知可知平面平面,要始終有平面,點(diǎn)m為定點(diǎn),所以點(diǎn)p的軌跡為線段hf,求其長度即可?!九e一反三】1、如圖,斜線段與平面所成的角為,為斜足,平面上的動點(diǎn)滿足,則點(diǎn)的軌跡是( )a直線 b拋物線 c橢圓 d雙曲線的一支【答案】c.2、【2017屆浙江稽陽聯(lián)誼學(xué)校高三月考】在正方體中,已知點(diǎn)為平面中的一個動點(diǎn),且點(diǎn)滿足:直線與平面所成的角的大小等于平面與平面所成銳二面角的大小,則點(diǎn)的軌跡為( )a直線 b橢圓 c圓 d拋物線【答案】d3、【2017屆浙江省名校協(xié)作體高三下學(xué)期考試】已知平面平面,且.是正方形,在正方形內(nèi)部有一點(diǎn),滿足與平面所成的角相等,則點(diǎn)的軌跡長度為 ( )a. b. c. d. 【答案】c【解析】根據(jù)題意,以為原點(diǎn),分別以所在直線為軸,建立空間直角坐標(biāo)系,如圖1所示,則,設(shè),易知直線與平面所的角分別為,均為銳角,類型五 立體幾何中動態(tài)問題中的翻折、旋轉(zhuǎn)問題【例5】如圖,已知,是的中點(diǎn),沿直線將折成,所成二面角的平面角為,則( )a. b. c. d.【答案】b.【解析】試題分析:設(shè),設(shè),則由題意,在空間圖形中,設(shè),在中,在空間圖形中,過作,過作,垂足分別為,過作,連結(jié),則就是二面角的平面角,在中,【舉一反三】 1、【2017課標(biāo)1,理16】如圖,圓形紙片的圓心為o,半徑為5 cm,該紙片上的等邊三角形abc的中心為o.d、e、f為圓o上的點(diǎn),dbc,eca,fab分別是以bc,ca,ab為底邊的等腰三角形.沿虛線剪開后,分別以bc,ca,ab為折痕折起dbc,eca,fab,使得d、e、f重合,得到三棱錐.當(dāng)abc的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_.【答案】【解析】2、【浙江省2017屆高三3月聯(lián)考】矩形中, , ,將與沿所在的直線進(jìn)行隨意翻折,在翻折過程中直線與直線成的角范圍(包含初始狀態(tài))為( )a. b. c. d. 【答案】c【解析】初始狀態(tài)直線與直線成的角為 ,翻折過程中當(dāng)時, 直線與直線成的角為直角,因此直線與直線成的角范圍為,選c.3、如圖,等邊三角形的中線與中位線相交于,已知是繞旋轉(zhuǎn)過程中的一個圖形,下列命題中,錯誤的是( )a動點(diǎn)在平面上的射影在線段上 b恒有平面平面c三棱錐的體積有最大值 d異面直線與不可能垂直【答案】d三強(qiáng)化訓(xùn)練1、【2017課標(biāo)3,理16】a,b為空間中兩條互相垂直的直線,等腰直角三角形abc的直角邊ac所在直線與a,b都垂直,斜邊ab以直線ac為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:當(dāng)直線ab與a成60角時,ab與b成30角;當(dāng)直線ab與a成60角時,ab與b成60角;直線ab與a所成角的最小值為45;直線ab與a所成角的最小值為60.其中正確的是_.(填寫所有正確結(jié)論的編號)【答案】【解析】試題分析:由題意,是以ac為軸,bc為底面半徑的圓錐的母線,由,又ac圓錐底面,在底面內(nèi)可以過點(diǎn)b,作,交底面圓于點(diǎn)d,如圖所示,連結(jié)de,則debd,連結(jié)ad,等腰abd中, ,當(dāng)直線ab與a成60角時,故,又在中,過點(diǎn)b作bfde,交圓c于點(diǎn)f,連結(jié)af,由圓的對稱性可知 ,為等邊三角形,即ab與b成60角,正確,錯誤.由最小角定理可知正確;很明顯,可以滿足平面abc直線a,直線與所成的最大角為90,錯誤.正確的說法為. 2、【2015高考山東,理7】在梯形中, .將梯形繞所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為()(a)(b)(c)(d)【答案】c 3、【2017屆河北定州市月考卷】設(shè)動點(diǎn)在棱長為1的正方體的對角線上,記,當(dāng)為鈍角時,的取值范圍是 【答案】【解析】4、【江西師范大學(xué)附屬中學(xué)2017屆高三3月月考】如右圖所示,在棱長為2的正方體中, 為棱的中點(diǎn),點(diǎn)分別為面和線段上的動點(diǎn),則周長的最小值為_ 【答案】【解析】將面與面折成一個平面,設(shè)e關(guān)于的對稱點(diǎn)為m,e關(guān)于 對稱點(diǎn)為n,則周長的最小值為. 5、如圖所示,在棱長為2的正四面體中,是棱的中點(diǎn),若是棱上一動點(diǎn),則的最小值為 a b c d【答案】b6、在直三棱柱中,底面為直角三角形, ,是上一動點(diǎn),則的最小值是( )a b c d 【答案】b7、在長方體中,點(diǎn)為對角線上的動點(diǎn),點(diǎn)為底面上的動點(diǎn)(點(diǎn),可以重合),則的最小值為( )a b c d【答案】c【解析】由題意易得:,作平面于,由對稱性可知,因此,問題轉(zhuǎn)化為在平面內(nèi),體對角線上找一點(diǎn)使得最小,如下圖所示,過點(diǎn)作它關(guān)于直線的對稱點(diǎn),交直線與點(diǎn), 再過點(diǎn)作于點(diǎn),交于點(diǎn),則的長度即為所求的最小值,易得,故選c8、已知直角梯形,沿折疊成三棱錐,當(dāng)三棱錐體積最大時,兩點(diǎn)間的距離是 .【答案】 9、如圖,矩形中,平面,若在上只有兩個點(diǎn)滿足,則的取值范圍是 .【答案】.【解析】由,得:,設(shè) ,則由勾股定理可計算:,代入整理得: ,由題意得方程有兩個正根,.10、【2015高考山東,文9】已知等腰直角三角形的直角邊的長為2,將該三角形繞其斜邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為( )(a) (b) ()2 ()4 【答案】11、【2017屆江西鷹潭一中高三理上學(xué)期月考五】如圖,在棱長為的正方體中,為的中點(diǎn),為上任意一點(diǎn),為上任意兩點(diǎn),且的長為定值,則下面的四個值中不為定值的是( )a點(diǎn)到平面的距離 b三棱錐的體積c直線與平面所成的角 d二面角的大小【答案】c【解析】試題分析:a:平面也就是平面,既然和平面都是固定的,到平面的距離是定值;b:的面積是定值(定長,到的距離就是到的距離也為定長,即底和高都是定值),再根據(jù)的結(jié)論到平面的距離也是定值,三棱錐的高也是定值,于是體積固定三棱錐的體積是定值;c:是動點(diǎn),也是動點(diǎn),推不出定值的結(jié)論,就不是定值直線與平面所成的角不是定值;d:,為上任意一點(diǎn),、為上任意兩點(diǎn),二面角的大小為定值故選:c12、長方體中,已知,棱在平面內(nèi),則長方體在平面內(nèi)的射影所構(gòu)成的圖形面積的取值范圍是 【答案】.【考點(diǎn)】立體幾何中的動態(tài)問題.(其中,),因此,當(dāng)且僅當(dāng)時取到,因此.13、如圖所示,正方體的棱長為, 分別是棱,的中點(diǎn),過直線的平面分別與棱、交于,設(shè),給出以下四個命題:(1)平面平面;(2)當(dāng)且僅當(dāng)時,四邊形的面積最??;(3)四邊形周長,則是偶函數(shù);(4)四棱錐的體積為常函數(shù);以上命題中真命題的序號為_.【答案】.,則,則是偶函數(shù);(4)根據(jù)分割思想,有,又,到平面的距離為1,又,為常函數(shù)14、【2014高考北京理第8題】如圖,正方體abcda1b1c1d1的棱長為2,動點(diǎn)e,f在棱a1b1上,動點(diǎn)p,q分別在棱ad,cd上若ef1,a1ex,dqy,dpz(x,y,z大于零),則四面體pefq的體積 ()a與x,y,z都有關(guān)b與x有關(guān),與y,z無關(guān)c與y有關(guān),與x,z無關(guān)d與z有關(guān),與x,y無關(guān)【答案】d【解析】試題分析:dca1b1,ef1,sefq12 (定值)而點(diǎn)p到面efq的距離為p到面a1dcb1的距離,為dpsin45z.v四面體pefqzz. 15、【2017屆廣西陸川縣中學(xué)高三9月月考】正四棱錐的底面邊長為2,高為2,是邊的中點(diǎn),動點(diǎn)在棱錐表面上運(yùn)動,并且總保持,則動點(diǎn)的軌跡的周長為_【答案】【解析】16、如圖,矩形中,為邊的中點(diǎn),將沿直線翻折成,若為線段的中點(diǎn),則在翻折過程中,下面四個命題中不正確的是( )a是定值 b點(diǎn)在某個球面上運(yùn)動c存在某個位置,使 d存在某位置,使平面【答案】c【解析】取中點(diǎn),連接,則,平面平面,平面,故d正確;由,為定值,為定值,由余弦定理可得,是定值,故a正確;是定點(diǎn),是在以為圓心,為半徑的圓上,故b正確;在平面中的射影為,與不垂直,存在某個位置,使錯誤,故選c17、在平行四邊形中, ,若將其沿折成直二面角,則三棱錐的外接球的表面積為( )a b c d【答案】c18、直角梯形,滿足,現(xiàn)將其沿折疊成三棱錐,當(dāng)三棱錐體積取最大值時其外接球的體積為( )a b c d【答案】b.19、【江西省2017屆

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論