全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
初中數(shù)學(xué)競賽專題培訓(xùn)第三講 實(shí)數(shù)的若干性質(zhì)和應(yīng)用 第3頁 實(shí)數(shù)是高等數(shù)學(xué)特別是微積分的重要基礎(chǔ)在初中代數(shù)中沒有系統(tǒng)地介紹實(shí)數(shù)理論,是因?yàn)樗婕暗綐O限的概念這一概念對中學(xué)生而言,有一定難度但是,如果中學(xué)數(shù)學(xué)里沒有實(shí)數(shù)的概念及其簡單的運(yùn)算知識,中學(xué)數(shù)學(xué)也將無法繼續(xù)學(xué)習(xí)下去了例如,即使是一元二次方程,只有有理數(shù)的知識也是遠(yuǎn)遠(yuǎn)不夠用的因此,適當(dāng)學(xué)習(xí)一些有關(guān)實(shí)數(shù)的基礎(chǔ)知識,以及運(yùn)用這些知識解決有關(guān)問題的基本方法,不僅是為高等數(shù)學(xué)的學(xué)習(xí)打基礎(chǔ),而且也是初等數(shù)學(xué)學(xué)習(xí)所不可缺少的本講主要介紹實(shí)數(shù)的一些基本知識及其應(yīng)用用于解決許多問題,例如,不難證明:任何兩個(gè)有理數(shù)的和、差、積、商還是有理數(shù),或者說,有理數(shù)對加、減、乘、除(零不能做除數(shù))是封閉的性質(zhì)1 任何一個(gè)有理數(shù)都能寫成有限小數(shù)(整數(shù)可以看作小數(shù)點(diǎn)后面為零的小數(shù))或循環(huán)小數(shù)的形式,反之亦然例1分析 要說明一個(gè)數(shù)是有理數(shù),其關(guān)鍵要看它能否寫成兩個(gè)整數(shù)比的形式證 設(shè)兩邊同乘以100得-得99x=261.54-2.61=258.93,無限不循環(huán)小數(shù)稱為無理數(shù)有理數(shù)對四則運(yùn)算是封閉的,而無理是說,無理數(shù)對四則運(yùn)算是不封閉的,但它有如下性質(zhì) 性質(zhì)2 設(shè)a為有理數(shù),b為無理數(shù),則(1)a+b,a-b是無理數(shù);有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù),即在實(shí)數(shù)集內(nèi),沒有最小的實(shí)數(shù),也沒有最大的實(shí)數(shù)任意兩個(gè)實(shí)數(shù),可以比較大小全體實(shí)數(shù)和數(shù)軸上的所有點(diǎn)是一一對應(yīng)的在實(shí)數(shù)集內(nèi)進(jìn)行加、減、乘、除(除數(shù)不為零)運(yùn)算,其結(jié)果仍是實(shí)數(shù)(即實(shí)數(shù)對四則運(yùn)算的封閉性)任一實(shí)數(shù)都可以開奇次方,其結(jié)果仍是實(shí)數(shù);只有當(dāng)被開方數(shù)為非負(fù)數(shù)時(shí),才能開偶次方,其結(jié)果仍是實(shí)數(shù)例2分析證所以分析 要證明一個(gè)實(shí)數(shù)為無限不循環(huán)小數(shù)是一件極難辦到的事由于有理數(shù)與無理數(shù)共同組成了實(shí)數(shù)集,且二者是矛盾的兩個(gè)對立面,所以,判定一個(gè)實(shí)數(shù)是無理數(shù)時(shí),常常采用反證法證 用反證法所以p一定是偶數(shù)設(shè)p=2m(m是自然數(shù)),代入得4m22q2,q22m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2為有理數(shù),a為無理數(shù)),則a1=a2,b1=b2,反之,亦成立分析 設(shè)法將等式變形,利用有理數(shù)不能等于無理數(shù)來證明證 將原式變形為(b1-b2)a=a2-a1若b1b2,則反之,顯然成立說明 本例的結(jié)論是一個(gè)常用的重要運(yùn)算性質(zhì)是無理數(shù),并說明理由整理得:由例4知aAb,1=A,說明 本例并未給出確定結(jié)論,需要解題者自己發(fā)現(xiàn)正確的結(jié)有理數(shù)作為立足點(diǎn),以其作為推理的基礎(chǔ)例6 已知a,b是兩個(gè)任意有理數(shù),且ab,求證:a與b之間存在著無窮多個(gè)有理數(shù)(即有理數(shù)集具有稠密性)分析 只要構(gòu)造出符合條件的有理數(shù),題目即可被證明證 因?yàn)閍b,所以2aa+b2b,所以說明 構(gòu)造具有某種性質(zhì)的一個(gè)數(shù),或一個(gè)式子,以達(dá)到解題和證明的目的,是經(jīng)常運(yùn)用的一種數(shù)學(xué)建模的思想方法例7 已知a,b是兩個(gè)任意有理數(shù),且ab,問是否存在無理數(shù),使得ab成立?即 由,有存在無理數(shù),使得ab成立b4+12b3+37b2+6b-20的值分析 因?yàn)闊o理數(shù)是無限不循環(huán)小數(shù),所以不可能把一個(gè)無理數(shù)的小數(shù)部分一位一位確定下來,這樣涉及無理數(shù)小數(shù)部分的計(jì)算題,往往是先估計(jì)它的整數(shù)部分(這是容易確定的),然后再尋求其小數(shù)部分的表示方法14=9+6b+b2,所以b2+6b=5b4+12b3+37b2+6b-20=(b4+26b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20=52+5-20=10例9 求滿足條件的自然數(shù)a,x,y解 將原式兩邊平方得由式變形為兩邊平方得例10 設(shè)an是12+22+32+n2的個(gè)位數(shù)字,n=1,2,3,求證:0.a1a2a3an是有理數(shù)分析 有理數(shù)的另一個(gè)定義是循環(huán)小數(shù),即凡有理數(shù)都是循環(huán)小數(shù),反之循環(huán)小數(shù)必為有理數(shù)所以,要證0.a1a2a3an是有理數(shù),只要證它為循環(huán)小數(shù)因此本題我們從尋找它的循環(huán)節(jié)入手證 計(jì)算an的前若干個(gè)值,尋找規(guī)律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,發(fā)現(xiàn):a20=0,a21=a1,a22=a2,a23=a3,于是猜想:ak+20=ak,若此式成立,說明0.a1a2an是由20個(gè)數(shù)字組成循環(huán)節(jié)的循環(huán)小數(shù),即下面證明ak+20=ak令f(n)=12+22+n2,當(dāng)f(n+20)-f(n)是10的倍數(shù)時(shí),表明f(n+20)與f(n)有相同的個(gè)位數(shù),而f(n+20)-f(n)=(n+1)2+(n+2)2+(n+20)2=10(2n2+42n)+(12+22+202)由前面計(jì)算的若
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度模特時(shí)尚產(chǎn)業(yè)模特聘用合同-@-12
- 二零二五年度出租車公司股權(quán)轉(zhuǎn)讓與綠色出行推廣協(xié)議4篇
- 上海車位購買協(xié)議范本(2024版)版B版
- 二零二五版廢舊設(shè)備買賣及環(huán)境評估協(xié)議3篇
- 二零二五年度食堂承包與營養(yǎng)搭配服務(wù)合同3篇
- 2025年生物科技企業(yè)部分股權(quán)增資擴(kuò)股合同3篇
- 2025年鮮羊奶行業(yè)新型經(jīng)銷商合作模式合同范本3篇
- 二零二五年度原創(chuàng)動漫角色形象知識產(chǎn)權(quán)歸屬協(xié)議下載2篇
- 二零二五年空壓機(jī)設(shè)備銷售與安裝驗(yàn)收合同2篇
- 2025年度高速公路服務(wù)區(qū)智能停車場車位租用合同范本
- 青島版二年級下冊三位數(shù)加減三位數(shù)豎式計(jì)算題200道及答案
- GB/T 12723-2024單位產(chǎn)品能源消耗限額編制通則
- GB/T 16288-2024塑料制品的標(biāo)志
- 麻風(fēng)病防治知識課件
- 干部職級晉升積分制管理辦法
- TSG ZF003-2011《爆破片裝置安全技術(shù)監(jiān)察規(guī)程》
- 2024年代理記賬工作總結(jié)6篇
- 電氣工程預(yù)算實(shí)例:清單與計(jì)價(jià)樣本
- VOC廢氣治理工程中電化學(xué)氧化技術(shù)的研究與應(yīng)用
- 煤礦機(jī)電設(shè)備培訓(xùn)課件
- 高考寫作指導(dǎo)議論文標(biāo)準(zhǔn)語段寫作課件32張
評論
0/150
提交評論