《概率論》分布函數(shù).ppt_第1頁
《概率論》分布函數(shù).ppt_第2頁
《概率論》分布函數(shù).ppt_第3頁
《概率論》分布函數(shù).ppt_第4頁
《概率論》分布函數(shù).ppt_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

S e X e R 定義設(shè)隨機(jī)試驗E的樣本空間為S e 稱定義在S上單值實值函數(shù) X X e e S 為隨機(jī)變量 記為r v X randomvariableX 1 它隨試驗結(jié)果的不同而取不同的值 因而在試驗之前只知道它可能取值的范圍 而不能預(yù)先肯定它將取哪個值 2 由于試驗結(jié)果的出現(xiàn)具有一定的概率 于是這種實值函數(shù) 隨機(jī)變量 取每個值和每個確定范圍內(nèi)的值也有一定的概率 這種實值函數(shù) 隨機(jī)變量 與在微積分中大家接觸到的函數(shù)不一樣 離散型隨機(jī)變量 非離散型隨機(jī)變量 隨機(jī)變量 離散型隨機(jī)變量 非離散型隨機(jī)變量X取單個值的概率都是0 將在后面論述 故討論其落入某一個區(qū)間的概率 數(shù)軸上區(qū)間的類型有 a b a b a b a b b b a a 等8類 但區(qū)間 b 是有代表意義的 對于x R 概率P X x 存在且為x的函數(shù) 這個函數(shù)稱為隨機(jī)變量X的分布函數(shù) 非離散型隨機(jī)變量 故考慮概率P X x 隨機(jī)變量的分布函數(shù) 為隨機(jī)變量X的分布函數(shù) 1 在分布函數(shù)的定義中 X是隨機(jī)變量 x是自變量 分布函數(shù)的定義域是全體實數(shù) 2 分布函數(shù)的值域是 0 1 注意 隨機(jī)點 實數(shù)點 3 4 對任意實數(shù)x1 x2 隨機(jī)點落在區(qū)間 x1 x2 內(nèi)的概率為 因此 只要知道了隨機(jī)變量X的分布函數(shù) 它的統(tǒng)計特性就可以得到全面的描述 P Xx2 P Xx1 P x1 Xx2 F x2 F x1 解 的分布函數(shù)圖 右連續(xù)的階梯函數(shù) 是單調(diào)不減函數(shù) 且 右連續(xù)函數(shù)即 分布函數(shù)的基本性質(zhì) 的分布函數(shù) 當(dāng)時 當(dāng)時 注 設(shè)隨機(jī)變量X的分布函數(shù)為 試求 1 系數(shù)A B 2 X取值落在 1 1 中的概率 1 由 解得 例 解 2 由分布函數(shù)計算事件概率公式得 于是 分布函數(shù)為 因此分布律為 解 則 例 求分布函數(shù) 例 解 若x 0 X x 為不可能事件 則F x P X x 0 若x r X x 為必然事件 F x P X x 1 若0 x r 由幾何概型知 事件 X r 表示所拋一點落在半徑為x 0 x r 的圓內(nèi) 向半徑為r的圓內(nèi)隨機(jī)拋一點 求此點到圓心的距離X的分布函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論