性質(zhì)定理公式全總結(jié)-21_第1頁
性質(zhì)定理公式全總結(jié)-21_第2頁
性質(zhì)定理公式全總結(jié)-21_第3頁
性質(zhì)定理公式全總結(jié)-21_第4頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

:線性方程組的矩陣式 向量式 矩陣轉(zhuǎn)置的性質(zhì):矩陣可逆的性質(zhì):伴隨矩陣的性質(zhì):(無條件恒成立)2線性方程組解的性質(zhì): 設(shè)為矩陣,若一定有解, 當(dāng)時(shí),一定不是唯一解,則該向量組線性相關(guān). 是的上限. 判斷是的基礎(chǔ)解系的條件: 線性無關(guān); 都是的解; . 一個(gè)齊次線性方程組的基礎(chǔ)解系不唯一. 若是的一個(gè)解,是的一個(gè)解線性無關(guān) 與同解(列向量個(gè)數(shù)相同),則: 它們的極大無關(guān)組相對(duì)應(yīng),從而秩相等; 它們對(duì)應(yīng)的部分組有一樣的線性相關(guān)性; 它們有相同的內(nèi)在線性關(guān)系. 兩個(gè)齊次線性線性方程組與同解. 兩個(gè)非齊次線性方程組與都有解,并且同解. 矩陣與的行向量組等價(jià)齊次方程組與同解(左乘可逆矩陣); 矩陣與的列向量組等價(jià)(右乘可逆矩陣). 關(guān)于公共解的三中處理辦法: 把(I)與(II)聯(lián)立起來求解; 通過(I)與(II)各自的通解,找出公共解;當(dāng)(I)與(II)都是齊次線性方程組時(shí),設(shè)是(I)的基礎(chǔ)解系, 是(II)的基礎(chǔ)解系,則 (I)與(II)有公共解基礎(chǔ)解系個(gè)數(shù)少的通解可由另一個(gè)方程組的基礎(chǔ)解系線性表示.即:當(dāng)(I)與(II)都是非齊次線性方程組時(shí),設(shè)是(I)的通解,是(II)的通解,兩方程組有公共解可由線性表示. 即: 設(shè)(I)的通解已知,把該通解代入(II)中,找出(I)的通解中的任意常數(shù)所應(yīng)滿足(II)的關(guān)系式而求出公共解。標(biāo)準(zhǔn)正交基 個(gè)維線性無關(guān)的向量,兩兩正交,每個(gè)向量長(zhǎng)度為1.向量與的內(nèi)積 . 記為:向量的長(zhǎng)度 是單位向量 . 即長(zhǎng)度為的向量. 內(nèi)積的性質(zhì): 正定性: 對(duì)稱性: 雙線性: 的特征矩陣 .的特征多項(xiàng)式 . 是矩陣的特征多項(xiàng)式的特征方程 . ,稱為矩陣的跡. 上三角陣、下三角陣、對(duì)角陣的特征值就是主對(duì)角線上的各元素. 若,則為的特征值,且的基礎(chǔ)解系即為屬于的線性無關(guān)的特征向量. 一定可分解為=、,從而的特征值為:, . 為各行的公比,為各列的公比.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論