![化學(xué)工程與工藝專業(yè)英語Unit_11.doc_第1頁](http://file.renrendoc.com/FileRoot1/2020-1/17/007ebd10-bf22-4d9b-a3bd-80408b03ba76/007ebd10-bf22-4d9b-a3bd-80408b03ba761.gif)
![化學(xué)工程與工藝專業(yè)英語Unit_11.doc_第2頁](http://file.renrendoc.com/FileRoot1/2020-1/17/007ebd10-bf22-4d9b-a3bd-80408b03ba76/007ebd10-bf22-4d9b-a3bd-80408b03ba762.gif)
![化學(xué)工程與工藝專業(yè)英語Unit_11.doc_第3頁](http://file.renrendoc.com/FileRoot1/2020-1/17/007ebd10-bf22-4d9b-a3bd-80408b03ba76/007ebd10-bf22-4d9b-a3bd-80408b03ba763.gif)
![化學(xué)工程與工藝專業(yè)英語Unit_11.doc_第4頁](http://file.renrendoc.com/FileRoot1/2020-1/17/007ebd10-bf22-4d9b-a3bd-80408b03ba76/007ebd10-bf22-4d9b-a3bd-80408b03ba764.gif)
![化學(xué)工程與工藝專業(yè)英語Unit_11.doc_第5頁](http://file.renrendoc.com/FileRoot1/2020-1/17/007ebd10-bf22-4d9b-a3bd-80408b03ba76/007ebd10-bf22-4d9b-a3bd-80408b03ba765.gif)
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Unit 10 What Is Chemical Engineering?什么是化學(xué)工程學(xué)In a wider sense, engineering may be defined as a scientific presentation of the techniques and facilities used in a particular industry. For example, mechanical engineering refers to the techniques and facilities employed to make machines. It is predominantly based on mechanical forces which are used to change the appearance and/or physical properties of the materials being worked, while their chemical properties are left unchanged. Chemical engineering encompasses the chemical processing of raw materials, based on chemical and physico-chemical phenomena of high complexity.廣義來講,工程學(xué)可以定義為對某種工業(yè)所用技術(shù)和設(shè)備的科學(xué)表達。例如,機械工程學(xué)涉及的是制造機器的工業(yè)所用技術(shù)和設(shè)備。它優(yōu)先討論的是機械力,這種作用力可以改變所加工對象的外表或物理性質(zhì)而不改變其化學(xué)性質(zhì)?;瘜W(xué)工程學(xué)包括原材料的化學(xué)過程,以更為復(fù)雜的化學(xué)和物理化學(xué)現(xiàn)象為基礎(chǔ)。Thus, chemical engineering is that branch of engineering which is concerned with the study of the design, manufacture, and operation of plant and machinery in industrial chemical processes.因此,化學(xué)工程學(xué)是工程學(xué)的一個分支,它涉及工業(yè)化化學(xué)過程中工廠和機器的設(shè)計、制造、和操作的研究。Chemical engineering is above all based on the chemical sciences, such as physical chemistry, chemical thermodynamics, and chemical kinetics. In doing so, however, it does not simply copy their findings, but adapts them to bulk chemical processing. The principal objectives that set chemical engineering apart from chemistry as a pure science, is “to find the most economical route of operation and to design commercial equipment and accessories that suit it best of all”. Therefore, chemical engineering is inconceivable without close ties with economics, physics, mathematics, cybernetics, applied mechanics, and other technical sciences.前述化學(xué)工程學(xué)都是以化學(xué)科學(xué)為基礎(chǔ)的,如物理化學(xué),化學(xué)熱力學(xué)和化學(xué)動力學(xué)。然而這樣做的時候,它并不是僅僅簡單地照搬結(jié)論,而是要把這些知識運用于大批量生產(chǎn)的化學(xué)加工過程。把化學(xué)工程學(xué)與純化學(xué)區(qū)分開來的首要目的是“找到最經(jīng)濟的生產(chǎn)路線并設(shè)計商業(yè)化的設(shè)備和輔助設(shè)備盡可能地適應(yīng)它。”因此如果沒有與經(jīng)濟學(xué),物理學(xué),數(shù)學(xué),控制論,應(yīng)用機械以及其它技術(shù)的聯(lián)系就不能想象化學(xué)工程會是什么樣的。In its early days, chemical engineering was largely a descriptive science. Many of the early textbooks and manuals on chemical engineering were encyclopedias of the commercial production processes known at the time. Progress in science and industry has bought with it an impressive increase in the number of chemical manufactures. Today, petroleum for example serves as the source material for the production of about 80 thousand chemicals. The expansion of the chemical process industries on the one hand and advances in the chemical and technical sciences on the other have made it possible to lay theoretical foundations for chemical processing.早期的化學(xué)工程學(xué)以描述性為主。許多早期的有關(guān)化學(xué)工程的教科書和手冊都是那個時候已知的商品生產(chǎn)過程的百科全書??茖W(xué)和工業(yè)的發(fā)展使化學(xué)品的制造數(shù)量迅速增加。舉例來說,今天石油已經(jīng)成為八萬多種化學(xué)產(chǎn)品生產(chǎn)的原材料。一方面是化學(xué)加工工業(yè)擴張的要求,另一方面是化學(xué)和技術(shù)水平的發(fā)展為化學(xué)工藝建立理論基礎(chǔ)提供了可能。As the chemical process industries forged ahead, new data, new relationships and new generalizations were added to the subject-matter of chemical engineering. Many branches in their own right have separated from the main stream of chemical engineering, such as process and plant design, automation, chemical process simulation and modeling, etc.隨著化學(xué)加工工業(yè)的發(fā)展,新的數(shù)據(jù),新的關(guān)系和新的綜論不斷添加到化學(xué)工程學(xué)的目錄中。然后又從主干上分出許多的分支,如工藝和工廠設(shè)計,自動化,化工工藝模擬和模型,等等。1. A Brief Historical OutlineHistorically, chemical engineering is inseparable from the chemical process industries. In its early days chemical engineering which came into being with the advent of early chemical trades was a purely descriptive division of applied chemistry.1 簡要的歷史輪廓從歷史上來說,化學(xué)工程學(xué)與化學(xué)加工工業(yè)密不可分。在早期,化學(xué)工程學(xué)隨著早期化學(xué)產(chǎn)品交易的發(fā)展而出現(xiàn),是應(yīng)用化學(xué)的純描述性的分支。 The manufacture of basic chemical products on Europe appears to have begun in the 15th century when small, specialized businesses were first set up to turn out acids, alkalis, salts, pharmaceutical preparations, and some organic compounds.在歐洲,基礎(chǔ)化學(xué)產(chǎn)品的制造出現(xiàn)在15世紀。一些小的、專門的企業(yè)開始創(chuàng)立,生產(chǎn)酸、堿、鹽、藥物中間體和一些有機化合物。 For all the rhetoric of nineteenth-century academic chemists in Britain urging the priority of the study of pure chemistry over applied, their students who became works chemists were little more than qualitative and quantitative analysts. Before the 1880s this was equally true of German chemical firms, who remained content to retain academic consultants who pursued research within the university and who would occasionally provide the material for manufacturing innovation. By the 1880s, however, industrialists were beginning to recognize that the scaling up of consultants laboratory preparations, and syntheses was a distinctly different activity from laboratory investigation. They began to refer to this scaling problem and its solution as “chemical engineering”possibly because the mechanical engineers who had already been introduced into works to who seemed best able to understand the process involved. The academic dichotomy of head and hand died slowly.由于十九世紀英國的學(xué)院化學(xué)家強調(diào)純化學(xué)的研究高于應(yīng)用化學(xué),他們的要成為工業(yè)化學(xué)家的學(xué)生也只是定性和定量分析者。在19世紀80年代以前,德國的化學(xué)公司也是這樣。他們愿意聘請那些在大學(xué)里進行研究的人作顧問,這些人偶爾為制造的革新提供一些意見。然而到了80年代,工業(yè)家們開始認識到要把顧問們在實驗室的準備和合成工作進行放大是一個與實驗室研究截然不同的活動。他們開始把這個放大的問題以及解決的方法交給“化學(xué)工程師”這可能是受到已經(jīng)進入工廠的機械工程師的表現(xiàn)的啟發(fā)。由于機械工程師熟悉所涉及的加工工藝,是維修日益復(fù)雜化的工業(yè)生產(chǎn)中的蒸氣機和高壓泵的最合適的人選。學(xué)院研究中頭和手兩分的現(xiàn)象逐漸消亡。Unit operation. In Britain when in 1881 there was an attempt to name the new Society of Chemical industry as the “Society of Chemical engineers”, the suggestion was turned down. On the other hand, as a result of growing pressure from the industrial sector the curricula of technical institutions began to reflect, at last, the need for chemical engineers rather than competent analysts. No longer was mere description of existing industrial processes to suffice. Instead the expectation was that the processes generic to various specific industries would be analyzed, thus making room for the introduction of thermodynamic perspectives, as well as those being opened up buy the new physical chemistry of kinetics, solutions and phases.單元操作。1881年英國曾經(jīng)準備把化學(xué)工業(yè)的一個新的協(xié)會命名為“化學(xué)工程師協(xié)會”,這個建議遭到了拒絕。另一方面,由于受到來自工業(yè)界日益加重的壓力,大學(xué)的課程開始體現(xiàn)出除了培養(yǎng)分析工作者還要培養(yǎng)化學(xué)工程師的要求。現(xiàn)在僅僅對現(xiàn)有工業(yè)過程進行描述已經(jīng)不夠了,需要對各種特殊工業(yè)進行工藝屬性的分析。這就為引入熱力學(xué)及動力學(xué)、溶液和相等物理化學(xué)新思想提供了空間。A key figure in this transformation was the chemical consultant, George Davis (1850-1907), the first secretary of the Society of Chemical Industry. In 1887 Davis, then a lecture at the Manchester Technical School, gave a series of lectures on chemical engineering, which he defined as the study of “the application of machinery and plant to the utilization of chemical action on the large scale”. The course, which revolved around the type of plant involved in large-scale industrial operations such as drying, crashing, distillation, fermentation, evaporation and crystallization, slowly became recognized as a model for courses elsewhere, not only in Britain, but overseas. The first fully fledged course in chemical engineering in Britain was not introduced until 1909;though in America, Lewis Norton (1855-1893) of MIT pioneered a Davis-type course as early as 1888.在這個轉(zhuǎn)變期,一位關(guān)鍵的人物是化學(xué)顧問George Davis,化學(xué)工業(yè)協(xié)會的首任秘書。1887年Davis那時是Manchester專科學(xué)校的一名講師,做了一系列有關(guān)化學(xué)工程學(xué)的講座。他把化學(xué)工程學(xué)定義為對“大規(guī)?;瘜W(xué)生產(chǎn)中所應(yīng)用的機器和工廠”的研究。這們課程包括了大規(guī)模工業(yè)化操作的工廠的各種類型,如干燥、破碎、蒸餾、發(fā)酵、蒸發(fā)和結(jié)晶。后來逐漸在別的地方而不僅僅在英國,而是國外,成為許多課程的雛形。英國直到1909年化學(xué)工程學(xué)才成為一門較為完善的課程,而在美國,MIT的Lewis Norton早在1888年就已率先開出了Davis型課程。In 1915, Arthur D. Little, in a report on MITs programme, referred to it as the study of “unit operations” and this neatly encapsulated the distinctive feature of chemical engineering in the twentieth century. The reasons for the success of the Davis movement are clear: it avoided revealing the secrets of specific chemical processes protected by patents or by an owners reticencefactors that had always seriously inhibited manufacturers from supporting academic programmes of training in the past. Davis overcame this difficulty by converting chemical industries “into separate phenomena which could be studied independently” and, indeed, experimented with in pilot plants within a university or technical college workshop.1915年,Arthur D. little 在一份MIT的計劃書中,提出了“單元操作”這個概念,這幾乎為二十世紀化學(xué)工程學(xué)的突出特點做了定性。Davis這一倡議的成功原因是很明顯的:它避免了泄露特殊化學(xué)過程中受專利權(quán)或某個擁有者的保留權(quán)所保護的秘密。過去這種泄露已經(jīng)嚴重限制了制造者對學(xué)院研究機構(gòu)訓(xùn)練計劃的支持。Davis把化學(xué)工業(yè)分解為“能獨立進行研究的單個的工序”從而克服了這個困難。并且在大學(xué)或?qū)?茖W(xué)校的工廠里用中試車間進行了試驗。In effect he applied the ethics of industrial consultancy by which experience was transmitted “from plant to plant and from process to process in such a way which did not compromise the private or specific knowledge which contributed to a given plants profitability”. The concept of unit operations held that any chemical manufacturing process could be resolved into a coordinated series of operations such as pulverizing, drying, roasting, electrolyzing, and so on. Thus, for example, the academic study of the specific aspects of turpentine manufacture could be replaced by the generic study of distillation, a process common to many other industries. A quantitative form of the unit operations concept emerged around 1920s, just in time for the nations first gasoline crisis. The ability of chemical engineers to quantitatively characterize unit operations such as distillation allowed for the rational design of the first modern oil refineries. The first boom of employment of chemical engineers in the oil industry was on.他采用了工業(yè)顧問公司的理念,經(jīng)驗傳遞從一個車間到另一個車間,從一個過程到另一個過程。這種方式不包含限于某個給定工廠的利潤的私人的或特殊的知識。單元操作的概念使每一個化學(xué)制造過程都能分解為一系列的操作步驟,如研末、干燥、烤干、電解等等。例如,學(xué)校對松節(jié)油制造的特殊性質(zhì)的研究可以用蒸餾屬性研究來代替。這是一個對許多其它工業(yè)制造也很普通的工藝過程。單元操作概念的定量形式大概出現(xiàn)在1920年,剛好是在第一次全球石油危機出現(xiàn)的時候?;瘜W(xué)工程師能賦予單元操作定量特性的能力使得他們合理地設(shè)計了第一座現(xiàn)代煉油廠。石油工業(yè)第一次大量聘請化學(xué)工程師的繁榮時代開始了。During this period of intensive development of unit operations, other classical tools of chemical engineering analysis were introduced or were extensively developed. These included studies of the material and energy balance of processes and fundamental thermodynamic studies of multicomponent systems.在單元操作密集繁殖的時代,化學(xué)工程學(xué)另一些經(jīng)典的分析手段也開始被引入或廣泛發(fā)展。這包括過程中材料和能量平衡的研究以及多組分體系中基礎(chǔ)熱力學(xué)的研究。Chemical engineers played a key role in helping the United States and its allies win World War . They developed routes to synthetic rubber to replace the sources of natural rubber that were lost to the Japanese early in the war. They provided the uranium-235 needed to build the atomic bomb, scaling up the manufacturing process in one step from the laboratory to the largest industrial plant that had ever been built. And they were instrumental in perfecting the manufacture of penicillin, which saved the lives of potentially hundreds of thousands of wounded soldiers.化學(xué)工程師在幫助美國及其盟國贏得第二次世界大戰(zhàn)的勝利中起了關(guān)鍵的作用。他們發(fā)展了合成橡膠的方法以代替在戰(zhàn)爭初期因日本的封鎖而失去來源的天然橡膠。他們提供了制造原子彈所需要的鈾-235,把制造過程從實驗室研究一步放大到當(dāng)時最大規(guī)模的工業(yè)化工廠,而他們在完善penicillin的生產(chǎn)工藝中也是功不可沒,它挽救了幾十萬受傷士兵的生命。The Engineering Science Movement. Dissatisfied with empirical descriptions of process equipment performance, chemical engineers began to reexamine unit operations from a more fundamental point of view. The phenomena that take place in unit operations were resolved into sets of molecular events. Quantitative mechanistic models for these events were developed and used to analyze existing equipment. Mathematical models of processes and reactors were developed and applied to capital-intensive U.S. industries such as commodity petrochemicals.工程學(xué)運動。由于不滿意對工藝設(shè)備運行的經(jīng)驗描述,化學(xué)工程師開始從更基礎(chǔ)的角度再審視單元操作。發(fā)生在單元操作中的現(xiàn)象可以分解到分子運動水平。這些運動的定量機械模型被建立并用于分析已有的儀器設(shè)備。過程和放應(yīng)器的數(shù)學(xué)模型也被建立并被應(yīng)用于資金密集型的美國工業(yè)如石油化學(xué)工業(yè)。Parallel to the growth of the engineering science movement was the evolution of the core chemical engineering curriculum in its present form. Perhaps more than any other development, the core curriculum is responsible for the confidence with which chemical engineers integrate knowledge from many disciplines in the solution of complex problems.與工程學(xué)同時發(fā)展的是現(xiàn)在的化學(xué)工程課程設(shè)置的變化。也許與其它發(fā)展相比較,核心課程為化學(xué)工程師運用綜合技能解決復(fù)雜問題更加提供了信心。The core curriculum provides a background in some of the basic sciences, including mathematics, physics, and chemistry. This background is needed to undertake a rigorous study of the topics central to chemical engineering, including:核心課程固定了一些基礎(chǔ)科學(xué)為背景,包括數(shù)學(xué),物理,和化學(xué)。這些背景對于從事以化學(xué)工程為中心的課題的艱苦研究是必須的,包括:Multicomponent thermodynamics and kinetics,Transport phenomena,Unit operations,Reaction engineering,Process design and control, andPlant design and systems engineering.多組分體系熱力學(xué)及動力學(xué)傳輸現(xiàn)象單元操作反應(yīng)工程過程設(shè)計和控制工廠設(shè)計和系統(tǒng)工程This training has enabled chemical engineers to become leading contributors to a number of interdisciplinary areas, including catalysis, colloid science and technology, combustion, electro-chemical engineering, and polymer science and technology.這種訓(xùn)練使化學(xué)工程師們成為了在許多學(xué)科領(lǐng)域做出了突出貢獻的人,包括在催化學(xué)、膠體科學(xué)和技術(shù)、燃燒、電化學(xué)工程、以及聚合物科學(xué)和技術(shù)方面。2. Basic Trends In Chemical EngineeringOver the next few years, a confluence of intellectual advances, technologic challenges, and economic driving forces will shape a new model of what chemical engineering is and what chemical engineering does.2. 化學(xué)工程學(xué)的基本發(fā)展趨勢 未來幾年里,科學(xué)的進步,技術(shù)的競爭以及經(jīng)濟的驅(qū)動力將為化學(xué)工程是什么以及化學(xué)工程能做什么打造一個新的模型。The focus of chemical engineering has always been industrial processes that change the physical state or chemical composition of materials. Chemical engineers engage in the synthesis, design, testing scale-up, operation, control and optimization of these processes. The traditional level of size and complexity at which they have worked on these problems might be termed the mesoscale. Examples of this scale include reactors and equipment for single processes (unit operations) and combinations of unit operations in manufacturing plants. Future research at the mesoscale will be increasingly supplemented by dimensionsthe microscale and the dimensions of extremely complex systemsthe macroscale.化學(xué)工程學(xué)的焦點一直是改變物體的物理狀態(tài)或化學(xué)性質(zhì)的工業(yè)過程。化學(xué)工程師致力于這些過程的合成、設(shè)計、測試放大、操作、控制和優(yōu)選。他們從事于解決的這些問題,傳統(tǒng)的規(guī)模水平和復(fù)雜程度可稱之為中等的,這種規(guī)模的例子包括有單個過程(單元操作)所使用的反應(yīng)器和設(shè)備以及制造廠里單元操作的組合,未來的研究將在規(guī)模上逐漸進行補充。除了中等規(guī)模,還有微型的以及更為復(fù)雜的系統(tǒng)-巨型的規(guī)模。Chemical engineers of the future will be integrating a wider range of scales than any other branch of engineering. For example, some may work to relate the macroscale of the environment to the mesoscale of combustion systems and the microscale of molecular reactions and transport. Other may work to relate the macroscale performance of a composite aircraft to the mesoscale chemical reactor in which the wing was formed, the design of the reactor perhaps having been influenced by studies of the microscale dynamics of complex liquids.未來的化學(xué)工程師將比任何其他分支的工程師在更為寬廣的規(guī)模范圍緊密協(xié)作。例如,有些人可能從事于了解大范圍的環(huán)境與中等規(guī)模的燃燒系統(tǒng)以及微型的分子水平的反應(yīng)和傳遞之間的關(guān)系。另一些人則從事了解合成的飛機的的性能與機翼所用化學(xué)反應(yīng)器及反應(yīng)器的設(shè)計和對此有影響的復(fù)雜流體動力學(xué)的研究工作。Thus, future chemical and engineers will conceive and rigorously solve problems on a continuum of scales ranging from microscale. They will bring new tools and insights to research and practice from other disciplines: molecular biology, chemistry, solid-state physics, materials science, and electrical engineering. And they will make increasing use of computers, artificial intelligence, and expert system in problem solving, in product and process design, and in manufacturing.因此,未來的化學(xué)工程師們要準備好解決從微型的到巨型的規(guī)模范圍內(nèi)出現(xiàn)的問題。他們要用來自其它學(xué)科的新的工具和理念來研究和實踐:分子生物學(xué),化學(xué),固體物理學(xué),材料學(xué)和電子工程學(xué)。他們還將越來越多地使用計算機、人工智能以及專家系統(tǒng)來解決問題,進行產(chǎn)品和過程設(shè)計,生產(chǎn)制造。Two important development will be part of this unfolding picture of the discipline.Chemical engineers will become more heavily involved in
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度腳手架施工安全教育與培訓(xùn)服務(wù)合同
- 2025年度交換機產(chǎn)品市場推廣與品牌建設(shè)合同
- 2025年度物流園區(qū)運營管理合同樣本下載
- 重慶2025年重慶市涪陵區(qū)教育事業(yè)單位面向應(yīng)屆公費師范生招聘75人筆試歷年參考題庫附帶答案詳解
- 部分學(xué)校上學(xué)期期中考試八年級語文試卷(PDF版無答案)
- 漯河2024年河南漯河市審計局事業(yè)單位引進高層次人才2人筆試歷年參考題庫附帶答案詳解
- 漯河2024年河南漯河市中醫(yī)院招聘高層次人才5人筆試歷年參考題庫附帶答案詳解
- 浙江2025年浙江省數(shù)據(jù)局下屬事業(yè)單位招聘3人筆試歷年參考題庫附帶答案詳解
- 泰州江蘇泰州靖江市機關(guān)企事業(yè)單位勞務(wù)派遣管理服務(wù)中心招聘筆試歷年參考題庫附帶答案詳解
- 河南2024年河南信陽師范大學(xué)招聘碩士研究生42人筆試歷年參考題庫附帶答案詳解
- 2025年“春訓(xùn)”學(xué)習(xí)心得體會例文(3篇)
- 咯血病人介入術(shù)后護理
- 2025年春新外研版(三起)英語三年級下冊課件 Unit4第1課時Startup
- 幼兒園市級課一等獎-大班語言健康繪本《我的情緒小怪獸》有聲繪本課件
- 2025年供電所所長個人工作總結(jié)(2篇)
- 2025四川廣安發(fā)展建設(shè)集團限公司第一批招聘6人高頻重點提升(共500題)附帶答案詳解
- 2025年語言文字工作計劃
- 道路運輸企業(yè)主要負責(zé)人和安全生產(chǎn)管理人員安全考核試題庫(含參考答案)
- 《國防動員準備》課件
- 《(近)零碳園區(qū)評價技術(shù)規(guī)范》
- 微信、抖音、快手等社交平臺管理制度
評論
0/150
提交評論