第一課時(shí)兩角和與差的余弦.doc_第1頁(yè)
第一課時(shí)兩角和與差的余弦.doc_第2頁(yè)
第一課時(shí)兩角和與差的余弦.doc_第3頁(yè)
第一課時(shí)兩角和與差的余弦.doc_第4頁(yè)
第一課時(shí)兩角和與差的余弦.doc_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第一課時(shí) 兩角和與差的余弦教學(xué)目標(biāo):掌握兩角和與差的余弦公式,能用公式進(jìn)行簡(jiǎn)單的求值;培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高學(xué)生的數(shù)學(xué)素質(zhì).教學(xué)重點(diǎn):余弦的差角公式及簡(jiǎn)單應(yīng)用教學(xué)難點(diǎn):余弦的差角公式的推導(dǎo)教學(xué)過程:.課題導(dǎo)入在前面咱們共同學(xué)習(xí)了任意角的三角函數(shù),在研究三角函數(shù)時(shí),我們還常常會(huì)遇到這樣的問題:已知任意角、的三角函數(shù)值,如何求、或2的三角函數(shù)值?即:、或2的三角函數(shù)值與、的三角函數(shù)值有什么關(guān)系?.講授新課接下來(lái),我們繼續(xù)考慮如何把兩角差的余弦cos()用、的三角函數(shù)來(lái)表示的問題.在直角坐標(biāo)系xOy中,以O(shè)x軸為始邊分別作角、,其終邊分別與單位圓交于P1(cos,sin)、P2(cos,sin),則P1OP2.由于余弦函數(shù)是周期為2的偶函數(shù),所以,我們只需考慮0的情況.設(shè)向量a(cos,sin),b(cos,sin),則:ababcos ()cos ()另一方面,由向量數(shù)量積的坐標(biāo)表示,有abcoscossinsin所以:cos ()coscossinsin (C()兩角和的余弦公式對(duì)于任意的角、都是成立的,不妨,將此公式中的用代替,看可得到什么新的結(jié)果?cos ()cos cos ()sinsin()cos cos sinsin即:cos ()cos cos sinsin (C()請(qǐng)同學(xué)們觀察這一關(guān)系式與兩角差的余弦公式,看這兩式有什么區(qū)別和聯(lián)系?(1)這一式子表示的是任意兩角與的差的余弦與這兩角的三角函數(shù)的關(guān)系.(2)這兩式均表示的是兩角之和或差與這兩角的三角函數(shù)的關(guān)系.請(qǐng)同學(xué)們仔細(xì)觀察它們各自的特點(diǎn).(1)兩角之和的余弦等于這兩角余弦之積與其正弦之積的差.(2)兩角之差的余弦等于這兩角余弦之積與其正弦之積的和.不難發(fā)現(xiàn),利用這一式子也可求出一些與特殊角有關(guān)的非特殊角的余弦值.如:求cos 15可化為求cos(4530)或cos(6045)利用這一式子而求得其值.即:cos 15cos(4530)cos 45cos 30sin45sin30或:cos 15cos (6045)cos 60cos 45sin60sin45請(qǐng)同學(xué)們將此公式中的用代替,看可得到什么新的結(jié)果?cos()coscos sinsinsin即:cos()sin再將此式中的用代替,看可得到什么新的結(jié)果.cos()cossin()即:sin()cos.課堂練習(xí)1.求下列三角函數(shù)值cos (4530)cos 105解:cos(4530)cos 45cos 30sin45sin30cos 105cos (6045)cos 60cos 45sin60sin452.若cos cos ,cos()1,求sinsin.解:由cos()coscossinsin得:sinsincoscoscos()將coscos,cos()1代入上式可得:sinsin3.求cos 23cos 22sin23sin22的值.解:cos 23cos 22sin23sin22cos(2322)cos 454.若點(diǎn)P(3,4)在角終邊上,點(diǎn)Q(1,2)在角的終邊上,求cos ()的值.解:由點(diǎn)P(3,4)為角終邊上一點(diǎn);點(diǎn)Q(1,2)為角終邊上一點(diǎn),得:cos ,sin;cos,sin.cos()coscossinsin()()()5.已知cos(),cos(),求:tantan的值.解:由已知cos(),cos()可得:cos()cos()即:2coscoscos()cos()1即:2sinsin1由得tantantantan的值為.6.已知coscos,sinsin,求:cos ()的值.解:由已知coscos得:cos 22cos cos cos 2 由sinsin得:sin22sinsinsin2由得:22(coscossinsin)即:22cos()cos().課時(shí)小結(jié)兩公式的推導(dǎo)及應(yīng)用.課后作業(yè)課本P96習(xí)題 1,2,3兩角和與差的余弦1下列命題中的假命題是 ( )A.存在這樣的和的值,使得cos()coscossinsinB.不存在無(wú)窮多個(gè)和的值,使得cos()coscossinsinC.對(duì)于任意的和,都有cos()coscossinsinD.不存在這樣的和值,使得cos()coscossinsin2在ABC中,已知cos Acos BsinAsin,則AB一定是鈍角三角形嗎?3已知sinsin,求coscos的最大值和最小值.4已知:(,),(0,),且cos(),sin()求:cos ().5已知:、為銳角,且cos,cos(),求cos的值.6在ABC中,已知sinA,cosB,求cos C的值.兩角和與差的余弦答案1B2在ABC中,已知cos Acos BsinAsin,則AB一定是鈍角三角形嗎?解:在ABC中,0C,且ABC即:ABC由已知得cos Acos BsinAsinB0,即:cos(AB)0cos(C)cos C0,即cos C0C一定為鈍角ABC一定為鈍角三角形.3已知sinsin,求coscos的最大值和最小值.分析:令coscosx,然后利用函數(shù)思想.解:令coscosx,則得方程組:22得22cos ()x2cos ()|cos ()|1, | |1解之得:xcoscos的最大值是,最小值是.4已知:(,),(0,),且cos(),sin()求:cos ().解:由已知:(,)(,)(,0)又cos (), sin()由(0,)(,)又sin()sin()sin()即sin(), cos()又()()cos()cos()()cos()cos()sin()sin()()5已知:、為銳角,且cos,cos(),求cos的值.解:0,0由cos (),得sin()又cos,sincoscos()cos()cos sin()sin()評(píng)述:在解決三角函數(shù)的求值問題時(shí),一定要注意已知角與所求角之間的關(guān)系.6在ABC中,已知sinA,cosB,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論