確定二次函數(shù)表達(dá)式.doc_第1頁(yè)
確定二次函數(shù)表達(dá)式.doc_第2頁(yè)
確定二次函數(shù)表達(dá)式.doc_第3頁(yè)
確定二次函數(shù)表達(dá)式.doc_第4頁(yè)
確定二次函數(shù)表達(dá)式.doc_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第二章 二次函數(shù)確定二次函數(shù)的表達(dá)式(第1課時(shí))一、學(xué)生知識(shí)狀況分析學(xué)生已經(jīng)學(xué)習(xí)了二次函數(shù)的一般式和頂點(diǎn)式表達(dá)式,二次函數(shù)的圖象和性質(zhì),尤其對(duì)特殊類型的二次函數(shù)圖象已有充分的認(rèn)識(shí).以前學(xué)生已經(jīng)學(xué)習(xí)了用待定系數(shù)法確定一次函數(shù)和反比例函數(shù)的關(guān)系式,因此本節(jié)課學(xué)生用類比的方法學(xué)習(xí)待定系數(shù)法確定二次函數(shù)的表達(dá)式應(yīng)該并不陌生和困難,因此,課堂教學(xué)時(shí)應(yīng)鼓勵(lì)學(xué)生敢于探究與實(shí)踐,通過(guò)小組合作交流等形式,充分調(diào)動(dòng)學(xué)生自主學(xué)習(xí)積極性和培養(yǎng)學(xué)生主動(dòng)發(fā)展的習(xí)慣和能力.在學(xué)生自主學(xué)習(xí)時(shí),要注意引導(dǎo)學(xué)生靈活應(yīng)用二次函數(shù)的三種形式:一般式,頂點(diǎn)式,交點(diǎn)式,以便在用待定系數(shù)法求解二次函數(shù)表達(dá)式時(shí)減少未知數(shù)的個(gè)數(shù),簡(jiǎn)化運(yùn)算過(guò)程.二、教學(xué)任務(wù)分析本節(jié)內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(北師大版)九年級(jí)下冊(cè)第二章第3節(jié)確定二次函數(shù)的表達(dá)式的第1課時(shí). 本節(jié)課是在學(xué)習(xí)二次函數(shù)的表達(dá)式和圖象性質(zhì)的基礎(chǔ)上展現(xiàn),目的為二次函數(shù)的的實(shí)際應(yīng)用奠基,是本章學(xué)習(xí)的關(guān)鍵點(diǎn).本節(jié)課既要承接上一節(jié)課的數(shù)形結(jié)合的數(shù)學(xué)思想,又要能夠根據(jù)實(shí)際問(wèn)題抽象數(shù)學(xué)模型,用待定系數(shù)法求解二次函數(shù)表達(dá)式,學(xué)生能夠根據(jù)條件靈活應(yīng)用二次函數(shù)的三種形式:一般式,頂點(diǎn)式,交點(diǎn)式,以便在用待定系數(shù)法求解二次函數(shù)表達(dá)式時(shí)減少未知數(shù)的個(gè)數(shù),簡(jiǎn)化運(yùn)算過(guò)程.本節(jié)課的教學(xué)目標(biāo)知識(shí)與技能:能夠根據(jù)二次函數(shù)的圖象和性質(zhì)建立合適的直角坐標(biāo)系,確定函數(shù)關(guān)系式,并會(huì)根據(jù)條件利用待定系數(shù)法求二次函數(shù)的表達(dá)式.過(guò)程與方法:經(jīng)歷確定適當(dāng)?shù)闹苯亲鴺?biāo)系以及根據(jù)點(diǎn)的坐標(biāo)確定二次函數(shù)表達(dá)式的思維過(guò)程,類比求一次函數(shù)的表達(dá)式的方法,體會(huì)求二次函數(shù)表達(dá)式的思想方法.情感、態(tài)度與價(jià)值觀:能把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,也能把所學(xué)知識(shí)運(yùn)用于實(shí)踐,培養(yǎng)學(xué)生積極參與的意識(shí),加深學(xué)生在生活中學(xué)數(shù)學(xué),將數(shù)學(xué)知識(shí)服務(wù)于生活的學(xué)習(xí)理念,養(yǎng)成學(xué)生善于主動(dòng)學(xué)習(xí)、樂(lè)于合作交流、學(xué)會(huì)總結(jié)提升的學(xué)習(xí)習(xí)慣,激發(fā)和調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,培養(yǎng)數(shù)學(xué)的應(yīng)用意識(shí).學(xué)習(xí)重點(diǎn):根據(jù)問(wèn)題靈活選用二次函數(shù)表達(dá)式的不同形式,用待定系數(shù)法確定二次函數(shù)表達(dá)式.學(xué)習(xí)難點(diǎn):根據(jù)問(wèn)題靈活選用二次函數(shù)表達(dá)式的不同形式,用待定系數(shù)法確定二次函數(shù)表達(dá)式.三、教學(xué)過(guò)程設(shè)計(jì)本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):復(fù)習(xí)引入初步探究深入探究反饋練習(xí)與知識(shí)拓展課時(shí)小結(jié)作業(yè)布置第一環(huán)節(jié)復(fù)習(xí)引入1.二次函數(shù)表達(dá)式的一般形式是什么?y=ax+bx+c (a,b,c為常數(shù),a 0)2.二次函數(shù)表達(dá)式的頂點(diǎn)式是什么? (a 0).3.若二次函數(shù)y=ax+bx+c(a0)與x軸兩交點(diǎn)為(,0),(,0)則其函數(shù)表達(dá)式可以表示成什么形式? (a 0).4.我們?cè)谟么ㄏ禂?shù)法確定一次函數(shù)y=kx+b(k,b為常數(shù),k0)的關(guān)系式時(shí),通常需要 個(gè)獨(dú)立的條件;確定反比例函數(shù)(k0)的關(guān)系式時(shí),通常只需要 個(gè)條件.如果要確定二次函數(shù)的關(guān)系式y(tǒng)=ax+bx+c (a,b,c為常數(shù),a 0),通常又需要幾個(gè)條件 ?(學(xué)生思考討論后,回答)第二環(huán)節(jié) 初步探究引例 如圖27是一名學(xué)生推鉛球時(shí),鉛球行進(jìn)高度y(m)與水平距離x(m)的圖象,你能求出其表達(dá)式嗎?分析:要求y與x之間的關(guān)系式,首先應(yīng)觀察圖象,確定函數(shù)的類型,然后根據(jù)函數(shù)的類型設(shè)它對(duì)應(yīng)的解析式,再把已知點(diǎn)的坐標(biāo)代入解析式求出待定系數(shù)即可此題設(shè)二次函數(shù)的頂點(diǎn)坐標(biāo)式進(jìn)行求解較為簡(jiǎn)便,學(xué)生較易接受;如學(xué)生通過(guò)找(10,0)在拋物線上的對(duì)稱點(diǎn)(2,0),用交點(diǎn)式 (a 0)求解或用其他方法求解均可.解:根據(jù)圖象是一拋物線且頂點(diǎn)坐標(biāo)為(4,3),因此設(shè)它的關(guān)系式為,又圖象過(guò)點(diǎn)(10,0),解得 ,圖象的表達(dá)式為.想一想:確定二次函數(shù)的表達(dá)式需要幾個(gè)條件?小結(jié):確定二次函數(shù)的關(guān)系式y(tǒng)=ax+bx+c (a,b,c為常數(shù),a 0),通常需要3 個(gè)條件; 當(dāng)知道頂點(diǎn)坐標(biāo)(h,k)和知道圖象上的另一點(diǎn)坐標(biāo)兩個(gè)條件,用頂點(diǎn)式可以確定二次函數(shù)的關(guān)系式.例1 已知二次函數(shù)y=ax2+c的圖象經(jīng)過(guò)點(diǎn)(2,3)和(1,3),求出這個(gè)二次函數(shù)的表達(dá)式.分析:二次函數(shù)y=ax2+c中只需確定a,c兩個(gè)系數(shù),需要知道兩個(gè)點(diǎn)坐標(biāo),因此此題只要把已知兩點(diǎn)代入即可.解:將點(diǎn)(2,3)和(1,3)分別代入二次函數(shù)y=ax2+c中,得解這個(gè)方程組,得所求二次函數(shù)表達(dá)式為:y=2x25.第三環(huán)節(jié) 深入探究例 已知二次函數(shù)的圖象與y軸交點(diǎn)的縱坐標(biāo)為1,且經(jīng)過(guò)點(diǎn)(2,5)和(2,13),求這個(gè)二次函數(shù)的表達(dá)式.目的:此例求二次函數(shù)的表達(dá)式,一方面讓學(xué)生深入探究根據(jù)不同的條件靈活選用二次函數(shù)的不同形式,通過(guò)待定系數(shù)法求出函數(shù)關(guān)系式,另一方面讓學(xué)生通過(guò)實(shí)踐感受到二次函數(shù)一般式y(tǒng)=ax+bx+c確定二次函數(shù)需要三個(gè)條件但由于這個(gè)二次函數(shù)圖象與y軸交點(diǎn)的縱坐標(biāo)為1,所以c=1,因此可設(shè)y=ax+bx+1把已知的二點(diǎn)代入關(guān)系式求出a,b的值即可.教學(xué)注意事項(xiàng):學(xué)生可能會(huì)根據(jù)條件,設(shè)二次函數(shù)的解析式y(tǒng)=ax+bx+c,把點(diǎn)(0,1),(2,5),(2,13)代入,用三元一次方程組解決,這對(duì)一些學(xué)生可能有一定的困難,可通過(guò)小組合作交流、個(gè)別輔導(dǎo)等形式解決.解法1 解:因?yàn)閽佄锞€與y軸交點(diǎn)縱坐標(biāo)為1,所以設(shè)拋物線關(guān)系式為,圖象經(jīng)過(guò)點(diǎn)(2,5)和(2,13)解得:a=2,b=2.這個(gè)二次函數(shù)關(guān)系式為 .解法2 解:設(shè)拋物線關(guān)系式為 y=ax+bx+c ,由題意可知,圖象經(jīng)過(guò)點(diǎn)(0,1),(2,5)和(2,13),解方程組得:a=2,b=2,c=1.這個(gè)二次函數(shù)關(guān)系式為 想一想在什么情況下,一個(gè)二次函數(shù)只知道其中兩點(diǎn)就可以確定它的表達(dá)式?小結(jié):1.用頂點(diǎn)式確定二次函數(shù)關(guān)系式,當(dāng)知道頂點(diǎn)(h,k)坐標(biāo)時(shí),那么再知道圖象上的另一點(diǎn)坐標(biāo),就可以確定這個(gè)二次函數(shù)的關(guān)系式.2. 用一般式y(tǒng)=ax+bx+c確定二次函數(shù)時(shí),如果系數(shù)a,b,c中有兩個(gè)是未知的,知道圖象上兩個(gè)點(diǎn)的坐標(biāo),也可以確定二次函數(shù)的表達(dá)式.如果系數(shù)a,b,c中三個(gè)都是未知的,這個(gè)我們將在下節(jié)課中進(jìn)行研究.第四環(huán)節(jié):反饋練習(xí)與知識(shí)拓展1.已知二次函數(shù)的圖象頂點(diǎn)是(1,1),且經(jīng)過(guò)點(diǎn)(1,3),求這個(gè)二次函數(shù)的表達(dá)式.2. 已知二次函數(shù)y=x+bx+c的圖象經(jīng)過(guò)點(diǎn)(1,1)與(2,3)兩點(diǎn).求這個(gè)二次函數(shù)的表達(dá)式.答案:1.用頂點(diǎn)式;2.;目的:旨在對(duì)學(xué)生求二次函數(shù)表達(dá)式的掌握情況進(jìn)行反饋,以便及時(shí)調(diào)整教學(xué)進(jìn)程第五環(huán)節(jié) 課時(shí)小結(jié)內(nèi)容:總結(jié)本課知識(shí)與方法1本節(jié)課主要學(xué)習(xí)了怎樣確定二次函數(shù)的表達(dá)式,在確定二次函數(shù)的表達(dá)式時(shí)可以用待定系數(shù)法,即先設(shè)出二次函數(shù)的解析式,再根據(jù)題目條件(根據(jù)圖象或已知點(diǎn))列出方程(組),解方程組求出待確定的系數(shù),最后答(把求出的系數(shù)代回關(guān)系式中寫(xiě)出關(guān)系式).在解題時(shí)應(yīng)靈活應(yīng)用二次函數(shù)的三種形式:一般式,頂點(diǎn)式,交點(diǎn)式,以便在用待定系數(shù)法求解二次函數(shù)表達(dá)式時(shí)減少未知數(shù)的個(gè)數(shù),簡(jiǎn)化運(yùn)算過(guò)程.因此,用待定系數(shù)法確定二次函數(shù)表達(dá)式的步驟:(設(shè)列解答)數(shù)形結(jié)合方程思想2本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想目的:引導(dǎo)學(xué)生小結(jié)本課的知識(shí)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化3. 學(xué)習(xí)了在什么情況下,一個(gè)二次函數(shù)只知道其中兩點(diǎn)就可以確定它的表達(dá)式?(1)用頂點(diǎn)式確定二次函數(shù)關(guān)系式,當(dāng)知道頂點(diǎn)(h,k)坐標(biāo)時(shí),那么再知道圖象上的另一點(diǎn)坐標(biāo),就可以確定這個(gè)二次函數(shù)的關(guān)系式.(2) 用一般式y(tǒng)=ax+bx+c確定二次函數(shù)時(shí),如果系數(shù)a,b,c中有兩個(gè)是未知的,知道圖象上兩個(gè)點(diǎn)的坐標(biāo),也可以確定二次函數(shù)的表達(dá)式.第六環(huán)節(jié)作業(yè)布置課本 習(xí)題 2.6 第1,2,3題四、教學(xué)設(shè)計(jì)反思1.設(shè)計(jì)理念本節(jié)課的重點(diǎn)是要學(xué)生了解用待定系數(shù)法求二次函數(shù)的表達(dá)式需要兩個(gè)條件的情況,掌握用待定系數(shù)法確定二次函數(shù)表達(dá)式的步驟和方法,并能根據(jù)條件靈活應(yīng)用二次函數(shù)的三種形式:一般式,頂點(diǎn)式,交點(diǎn)式,以便在用待定系數(shù)法求解二次函數(shù)表達(dá)式時(shí)減少未知數(shù)的個(gè)數(shù),簡(jiǎn)化運(yùn)算過(guò)程.本節(jié)課設(shè)計(jì)注重發(fā)展了學(xué)生的數(shù)形結(jié)合的思想方法及綜合分析解決問(wèn)題的能力及應(yīng)用意識(shí)的培養(yǎng),為后繼學(xué)習(xí)打下基礎(chǔ)2突出重點(diǎn)、突破難點(diǎn)策略探究的過(guò)程由淺入深,并利用了豐富的實(shí)際情景,既增加了學(xué)生學(xué)習(xí)的興趣,又讓學(xué)生深切體會(huì)到二次函數(shù)就在我們身邊教學(xué)中注意到利用問(wèn)題串的形式,層層遞進(jìn),逐步讓學(xué)生掌握求

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論