人教A版選修23 第1章 計(jì)數(shù)原理 章末復(fù)習(xí)課 學(xué)案.doc_第1頁
人教A版選修23 第1章 計(jì)數(shù)原理 章末復(fù)習(xí)課 學(xué)案.doc_第2頁
人教A版選修23 第1章 計(jì)數(shù)原理 章末復(fù)習(xí)課 學(xué)案.doc_第3頁
人教A版選修23 第1章 計(jì)數(shù)原理 章末復(fù)習(xí)課 學(xué)案.doc_第4頁
人教A版選修23 第1章 計(jì)數(shù)原理 章末復(fù)習(xí)課 學(xué)案.doc_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)習(xí)目標(biāo)1.歸納整理本章的知識要點(diǎn).2.能結(jié)合具體問題的特征,合理選擇兩個(gè)計(jì)數(shù)原理 分析和解決一些簡單的實(shí)際問題.3.理解排列、組合的概念,能利用計(jì)數(shù)原理推導(dǎo)排列數(shù)和組合數(shù)公式,掌握組合數(shù)的兩個(gè)性質(zhì),并能用它們解決實(shí)際問題.4.掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能應(yīng)用它們解決與二項(xiàng)展開式有關(guān)的計(jì)算和證明問題1分類計(jì)數(shù)原理完成一件事有n類不同的方案,在第1類方案中有m1種不同的方法,在第2類方案中有m2種不同的方法,在第n類方案中有mn種不同的方法,那么完成這件事共有n_種不同的方法2分步計(jì)數(shù)原理完成一件事需要n個(gè)步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法,做第n步有mn種不同的方法,那么完成這件事有n_種不同的方法3排列數(shù)與組合數(shù)公式及性質(zhì)排列與排列數(shù)組合與組合數(shù)公式排列數(shù)公式an(n1)(n2)_組合數(shù)公式c_性質(zhì)當(dāng)mn時(shí),a為全排列;an??;0!_cc1;c_;cc_備注n,mn*,且mn4.二項(xiàng)式定理(1)二項(xiàng)式定理的內(nèi)容 (ab)n_.(2)通項(xiàng)公式 t 1can b , 0,1,2,n(3)二項(xiàng)式系數(shù)的性質(zhì) 與首末兩端等距離的兩個(gè)二項(xiàng)式系數(shù)相等;若n為偶數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)最大;若n為奇數(shù),中間兩項(xiàng)的二項(xiàng)式系數(shù)相等且最大cccc2n;cccc2n1.類型一數(shù)學(xué)思想方法在求解計(jì)數(shù)問題中的應(yīng)用例1車間有11名工人,其中5名男工是鉗工,4名女工是車工,另外兩名老師傅既能當(dāng)車工又能當(dāng)鉗工,現(xiàn)在要在這11名工人里選派4名鉗工,4名車工修理一臺機(jī)床,則有多少種選派方法?反思與感悟解含有約束條件的排列、組合問題,應(yīng)按元素的性質(zhì)進(jìn)行分類,分類時(shí)需要滿足兩個(gè)條件 (1)類與類之間要互斥(保證不重復(fù))(2)總數(shù)要完備(保證不遺漏)跟蹤訓(xùn)練1從1,2,3,4,5,6這6個(gè)數(shù)字中,任取3個(gè)數(shù)字組成無重復(fù)數(shù)字的三位數(shù),其中若有1和3時(shí),3必須排在1的前面;若只有1和3中的一個(gè)時(shí),它應(yīng)排在其他數(shù)字的前面,這樣不同的三位數(shù)共有_個(gè)(用數(shù)字作答)例2設(shè)集合s1,2,3,4,5,6,7,8,9,集合aa1,a2,a3是s的子集,且a1,a2,a3滿足a1a26包含的情況較少,當(dāng)a39時(shí),a2取2,a1取1一種情況,利用正難則反思想解決集合s的含有三個(gè)元素的子集的個(gè)數(shù)為c84.在這些含有三個(gè)元素的子集中能滿足a1a26的集合只有1,2,9,故滿足題意的集合a的個(gè)數(shù)為84183.跟蹤訓(xùn)練230解析從4人中選出兩個(gè)人作為一個(gè)元素有c種方法,同其他兩個(gè)元素在三個(gè)位置上排列有ca36(種)方案,其中有不符合條件的,即學(xué)生甲、乙同時(shí)參加同一競賽有a種結(jié)果,不同的參賽方案共有36630(種)例3解(1)第一步先將4個(gè)舞蹈節(jié)目捆綁起 ,看成1個(gè)節(jié)目,與6個(gè)演唱節(jié)目一起排,有a5 040(種)方法;第二步再松綁,給4個(gè)節(jié)目排序,有a24(種)方法根據(jù)分步計(jì)數(shù)原理,一共有5 04024120 960(種)安排順序(2)第一步將6個(gè)演唱節(jié)目排成一列(如下圖中的“”),一共有a720(種)方法第二步再將4個(gè)舞蹈節(jié)目排在一頭一尾或兩個(gè)演唱節(jié)目中間,這樣相當(dāng)于7個(gè)“”選4個(gè) 排,一共有a840(種)方法根據(jù)分步計(jì)數(shù)原理,一共有720840 604 800(種)安排順序(3)若所有節(jié)目沒有順序要求,全部排列,則有a種排法,但原 的節(jié)目已定好順序,需要消除,所以節(jié)目演出的方式有a132(種)排列跟蹤訓(xùn)練3130解析由“1 x1 x2 x3 x4 x5 3”考慮x1,x2,x3,x4,x5的可能取值,設(shè)集合m0,n1,1當(dāng)x1,x2,x3,x4,x5中有2個(gè)取值為0時(shí),另外3個(gè)從n中取,共有c23種方法;當(dāng)x1,x2,x3,x4,x5中有3個(gè)取值為0時(shí),另外2個(gè)從n中取,共有c22種方法;當(dāng)x1,x2,x3,x4,x5中有4個(gè)取值為0時(shí),另外1個(gè)從n中取,共有c2種方法故總共有c23c22c2130(種)方法,即滿足題意的元素個(gè)數(shù)為130.例4解(1)由c(2)4c(2)2563,解得n10,因?yàn)橥?xiàng)tr1c()10rr(2)rc,r0,1,2,10.當(dāng)5為整數(shù)時(shí),r可取0,6,于是有理項(xiàng)為t1x5和t713 440.(2)設(shè)第r1項(xiàng)系數(shù)的絕對值最大,則解得又因?yàn)閞1,2,3,9,所以r7,當(dāng)r7時(shí),t815 360,又因?yàn)楫?dāng)r0時(shí),t1x5,當(dāng)r10時(shí),t11(2)101 024,所以系數(shù)的絕對值最大的項(xiàng)為t815 360.(3)原式109c81c9101c.跟蹤訓(xùn)練4解(1)令x1,得二項(xiàng)式n展開式中各項(xiàng)系數(shù)之和為(51)n4n,各項(xiàng)二項(xiàng)式系數(shù)之和為2n,由題意,得4n162n,所以2n16,n4.(2)通項(xiàng)tr1c(5x)4rr(1)rc54r展開式中二項(xiàng)式系數(shù)最大的項(xiàng)是第3項(xiàng)t3(1)2c52x150x.(3)由(2),得4r (r0,1,2,3,4),即r0,2,4,所以展開式中所有x的有理項(xiàng)為t1(1)0c54x4625x4,t3(1)2c52x150x,t5(1)4c50x2x2.例5解(1)(x23x2)5(x1)5(x2)5,a2是展開式中x2的系數(shù),a2c(1)5c(2)3c(1)4c(2)4c(1)3c(2)5800.(2)令x1,代入已知式,可得a0a1a2a100,而令x0,得a032,a1a2a1032.(3)令x1,可得(a0a2a4a10)(a1a3a7a9)65,再由(a0a2a4a10)(a1a3a7a9)0,把這兩個(gè)等式相乘可得,(a0a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論