探索三角形全等的條件(一).docx_第1頁
探索三角形全等的條件(一).docx_第2頁
探索三角形全等的條件(一).docx_第3頁
探索三角形全等的條件(一).docx_第4頁
探索三角形全等的條件(一).docx_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

探索三角形全等的條件第課時1.掌握三角形全等的“邊邊邊”條件,了解三角形的穩(wěn)定性.2.在探索三角形全等條件及其運用的過程中,能夠進行有條理的思考并進行簡單的推理.使學(xué)生在自主探索三角形全等的過程中,經(jīng)歷畫圖、觀察、比較、交流等過程,從而獲得正確的學(xué)習(xí)方式和良好的情感體驗.培養(yǎng)學(xué)生的空間觀念,推理能力,發(fā)展有條理的表達能力,積累數(shù)學(xué)活動經(jīng)驗.【重點】利用三角形全等的“邊邊邊”條件證明兩個三角形全等.【難點】利用“SSS”說明三角形全等的思考和推理過程.【教師準(zhǔn)備】多媒體課件.【學(xué)生準(zhǔn)備】預(yù)習(xí)教材P9798.導(dǎo)入一:過渡語前面我們研究了全等三角形,你還記得什么是全等三角形嗎?全等三角形有怎樣的性質(zhì)?(出示兩個全等三角形)處理方式能夠完全重合的兩個三角形全等,全等三角形的對應(yīng)邊相等,對應(yīng)角相等.如果ABCDEF,那么AB=DE,BC=EF,AC=DF,A=D,B=E,C=F.【問題】我們學(xué)校準(zhǔn)備制作形狀和大小完全一樣的三角形彩旗,把任務(wù)交給了同學(xué)們?nèi)ネ瓿?你知道怎么做才能保證這些三角形彩旗的形狀和大小完全一樣嗎?即如何制作和如圖的三角形全等的三角形?處理方式只要把圖(1)三角形放在彩色布上,如圖(2)所示,然后沿著三角形的邊剪下來就可以了.能否只通過簡單的幾個條件,就畫出與圖(1)全等的圖形呢?本節(jié)課就讓我們共同來探索三角形全等的條件.設(shè)計意圖通過問題情境的創(chuàng)設(shè),引入了本課的課題,激發(fā)了學(xué)生的好奇心和求知欲,調(diào)動了學(xué)生的學(xué)習(xí)積極性,讓學(xué)生知道數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無時不有.符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標(biāo)準(zhǔn)要求.導(dǎo)入二:過渡語小明家新買了房子,他爸爸想裝一面三角形的鏡子,木工師傅打好了框架,爸爸要去玻璃店裁一面鏡子,就問小明:“你已經(jīng)是七年級的學(xué)生了,你能用最簡單的辦法去裁一面這樣的三角形的鏡子嗎?”小明仔細(xì)想了想,就對爸爸說出了他的想法.爸爸說他回答得很好,聰明的你知道小明是怎么說的嗎?學(xué)習(xí)了本節(jié)內(nèi)容你就知道小明是怎樣說的了.設(shè)計意圖讓學(xué)生經(jīng)歷將現(xiàn)實問題抽象成數(shù)學(xué)模型的過程.提出問題讓學(xué)生思索,誘發(fā)新知識.這樣就自然引入了今天的新課,因為它對現(xiàn)實意義有用,所以同學(xué)們更會認(rèn)真去探索這節(jié)課的內(nèi)容.過渡語如何根據(jù)條件來判斷兩個三角形全等呢?探究活動1三角形全等的條件思路一【活動內(nèi)容1】若只給一個條件(一條邊或一個角)畫三角形時,大家畫出的三角形一定全等嗎?處理方式多媒體出示:一畫:按照下面給出的一個條件各畫出一個三角形.(1)三角形的一條邊長是3 cm;(2)三角形的一個角為45.二剪:把所畫的三角形分別剪下來.三比:同一條件下作出的三角形與其他同學(xué)作的比一比,是否全等.(通過畫一畫,剪一剪,比一比的方式,在小組內(nèi)進行交流,討論,形成結(jié)論)學(xué)生探究結(jié)果展示:1.只給定一條邊畫三角形時,不一定全等.畫出一邊長為3 cm的三角形,但是都不全等.(利用實物展臺展示)只給定一條邊:2.只給定一個角畫三角形時,不一定全等.畫出一個角是45的三角形,也不全等.(利用實物展臺展示)只給定一個角:結(jié)論:只給出一個條件時,不能保證所畫出的三角形一定全等.【活動內(nèi)容2】如果給出兩個條件,畫出的三角形是否全等?【問題】給出兩個條件,請同學(xué)們討論,畫出的三角形有幾種情況?(學(xué)生分組討論)處理方式有三種情況,已知一邊一角、兩邊或兩角.多媒體出示:一畫:(1)三角形的一個內(nèi)角為30,一條邊為3 cm;(2)三角形的兩個內(nèi)角分別為30和50;(3)三角形的兩條邊分別為4 cm,6 cm.二剪:把所畫的三角形分別剪下來.三比:同一條件下作出的三角形與其他同學(xué)作的比一比,是否全等.學(xué)生探究結(jié)果展示:(1)畫出的三角形幾乎都不一樣.(利用實物展臺展示)顯然這三個三角形不全等.(2)畫出的三角形的兩個內(nèi)角分別是30和50,畫的三角形形狀一樣,但大小不一樣.(利用實物展臺展示)這兩個三角形不能完全重合,因此也不全等.(3)畫出的三角形的兩邊分別為4 cm,6 cm,所畫出的三角形也不全等.(利用實物展臺展示)歸納:只給出兩個條件時,不能保證所畫出的三角形一定全等.設(shè)計意圖有效的數(shù)學(xué)學(xué)習(xí)不能單純地依賴模仿與記憶,動手實踐,自主探究與合作交流是學(xué)習(xí)數(shù)學(xué)的重要方式.在這里一方面引導(dǎo)學(xué)生動手去畫,另一方面鼓勵學(xué)生合作交流.既讓學(xué)生獲得知識,培養(yǎng)學(xué)生的合作意識,調(diào)動學(xué)生的主觀能動性,使學(xué)生積極主動地參與教學(xué)活動,對只有一個或兩個條件得不到三角形全等有更直觀的認(rèn)識;又讓學(xué)生獲得方法,為后繼的學(xué)習(xí)積累經(jīng)驗.【活動內(nèi)容3】如果給出三個條件,畫出的三角形是否全等.【問題】我們通過畫圖、觀察、比較知道,只給出一個條件或兩個條件時,都不能保證所畫出的三角形一定全等.那么給出三個條件時,又會怎樣呢?有幾種情況?(學(xué)生討論、交流)處理方式四種可能“三個角、三條邊、兩角一邊、兩邊一角”.【問題】已知一個三角形的三個內(nèi)角分別是40,60,80,畫出這個三角形,與同伴比較是否全等.(學(xué)生重復(fù)上面的操作過程,一畫、二剪,三比)處理方式通過畫圖我們發(fā)現(xiàn)“三個內(nèi)角分別相等的兩個三角形不一定全等”.【問題】如果所給的條件是三條邊相等呢?如三角形三條邊長分別是4 cm,5 cm,7 cm.處理方式教師做示范,學(xué)生跟著老師一步一步地作圖,作完圖后,同學(xué)之間把作成的三角形剪下來進行疊合在一起,看是否能夠重合,或者把你作的三角形剪下來與老師作的三角形進行疊合在一起,看是否能夠重合,從而得出結(jié)論.畫法指導(dǎo):1.用刻度尺畫線段AB=7 cm.2.以A為圓心,4 cm為半徑作弧.3.以B為圓心,5 cm為半徑作弧,與前弧交于點C.4.連接AC,BC.三角形ABC就是所求.結(jié)論:三邊對應(yīng)相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”,這就是三角形全等的條件.(板書:三邊分別相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”)在ABC和ABC中,AB=AB,BC=BC,AC=AC,所以ABCABC(SSS).設(shè)計意圖培養(yǎng)學(xué)生的合作意識、動手能力,讓學(xué)生在作圖的實踐過程中,學(xué)會歸納概括,發(fā)現(xiàn)三角形全等的條件,有條理地表達自己的思考過程,并有意識地反思探索過程,獲得分析問題的經(jīng)驗.思路二【活動內(nèi)容】一、想一想.1.只給一個條件(一條邊或一個角)畫三角形時,大家畫出的三角形一定全等嗎?2.給出兩個條件畫三角形時,有幾種可能的情況?每種情況下作出的三角形一定全等嗎?分別按照下面的條件做一做.(1)三角形的一個內(nèi)角為30,一條邊為3 cm;(2)三角形的兩個內(nèi)角分別為30和50;(3)三角形的兩條邊分別為4 cm,6 cm.二、議一議.如果給出三個條件畫三角形,你能說出有哪幾種可能的情況?三、做一做.1.已知一個三角形的三個內(nèi)角分別為40,60和80,你能畫出這個三角形嗎?把你畫的三角形與同伴畫出的進行比較,它們一定全等嗎?2.已知一個三角形的三條邊分別為4 cm,5 cm和7 cm,你能畫出這個三角形嗎?把你畫的三角形與同伴畫出的進行比較,它們一定全等嗎?處理方式對于只給出一個條件時結(jié)論是顯而易見的.因此,只需學(xué)生想象此時的情況即可,無需實際畫出三角形.當(dāng)給出兩個條件時,學(xué)生也不難得出結(jié)論,教學(xué)中讓學(xué)生實際去畫一畫,感受反例的作用.這時學(xué)生發(fā)現(xiàn)兩個條件都不能使結(jié)論成立,那么三個條件呢?引出議一議.由于三個條件的組合較多,所以先讓學(xué)生組合一下條件.組合時提醒學(xué)生按照一定的順序、規(guī)律進行,不重不漏.讓學(xué)生在討論的過程中體驗分類的思想.討論出結(jié)果后,本節(jié)課只研究三個角和三條邊的情況,也就是做一做.對于已知三個內(nèi)角的情況,學(xué)生能比較容易地舉出反例.而對于已知三邊的研究則是本節(jié)課的重點,也是難點.由于七年級學(xué)生在作圖方面沒有太深的基礎(chǔ),所以這里的作圖,可以利用一切工具,如:直尺,量角器等.每人完成后,先小組比較,然后全班比較,根據(jù)它們都重合的特點,使學(xué)生承認(rèn)“邊邊邊”的條件.(這里有的學(xué)生可能在作圖上有困難,如果出現(xiàn)困難,可以用小木條、細(xì)紙條等擺一擺)設(shè)計意圖以問題串的形式引導(dǎo)學(xué)生逐步深入地思考可以使三角形全等的條件和問題的提出從條件的由少到多,由簡到繁,一步步深入,通過一系列的活動最終得出正確的結(jié)論.探究活動2知識運用,鞏固提升如圖,AB=CD,AC=BD,ABC和DCB是否全等?試說明理由.解:ABCDCB.理由:在ABC和DCB中,因為AB=CD,AC=BD,BC=BC,所以ABCDCB.【跟蹤練習(xí)】(多媒體出示)如圖所示,D,F是線段BC上的兩點,AB=EC,AF=ED,要使ABFECD,還需要條件.生:要使ABFECD,根據(jù)“SSS”,在ABF和ECD中,已滿足了AB=EC,AF=ED,只需要BF=CD就可以了.生:如果BD=CF,因為BD+DF=CF+DF,所以BF=CD,根據(jù)“SSS”,在三角形ABF和三角形ECD中,也滿足了AB=EC,AF=ED,BF=CD,所以ABFECD.得出結(jié)論:還需要條件BF=CD或者BD=CF.設(shè)計意圖通過兩個題,使學(xué)生進一步熟悉“邊邊邊”,更重要的是能按照老師的書寫格式進行簡單的說理,為八年級學(xué)習(xí)“證明”打好基礎(chǔ).探究活動3三角形穩(wěn)定性的認(rèn)識1.準(zhǔn)備若干長度適中的小木條,用其中三根木條釘成一個三角形的框架,它的形狀和大小是固定的嗎?如果用四根小木條釘成的框架形狀和大小固定嗎?2.你能用所學(xué)知識解釋三角形的穩(wěn)定性嗎?3.你能舉幾個應(yīng)用三角形穩(wěn)定性的例子嗎?處理方式(1)在學(xué)生探索完三角形全等的條件“邊邊邊”后,再討論三角形所具有的性質(zhì).(2)可在課前布置學(xué)生制作三角形、四邊形等模型,在課堂上現(xiàn)場展示即可.(3)鼓勵學(xué)生思考三角形為什么具有穩(wěn)定性,逐步樹立推理意識.(4)最后讓學(xué)生舉幾個應(yīng)用三角形穩(wěn)定性的例子.設(shè)計意圖通過此活動,培養(yǎng)學(xué)生的動手能力,在實踐操作中對于三角形形狀的固定有初步的認(rèn)識,再在教學(xué)中鼓勵學(xué)生思考三角形為什么具有穩(wěn)定性,逐步樹立推理意識.在實際操作中培養(yǎng)學(xué)生善于觀察、樂于探索的學(xué)習(xí)品質(zhì)及與他人合作交流的意識.知識拓展利用判定方法1(SSS)時,要注意必須滿足三邊對應(yīng)相等時,兩個三角形全等,只有一邊或兩邊對應(yīng)相等的兩個三角形不一定全等.由三條邊對應(yīng)相等的兩個三角形全等可知,只有三條邊的長度確定了,這兩個三角形的大小和形狀就確定了,這就是三角形的穩(wěn)定性,三角形的穩(wěn)定性在實際生活中有著廣泛的運用.1.三邊對應(yīng)相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”,這就是三角形全等的條件.2.三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.1.如圖所示,已知AD=BC,要使ABC與BAD全等,需添加什么條件?請說明理由.解:添加AC=BD,因為在ABC和BAD中,BC=AD(已知),AC=BD(已知),AB=AB(公共邊),所以ABCBAD(SSS).2.如圖所示,在四邊形ABCD中,AB=AD,BC=DC,E為AC上的點,BE=DE.試判斷:(1)圖中哪些三角形全等?請說明理由;(2)圖中哪些角相等?解:(1)因為AD=AB,DC=BC,AC=AC,所以ADC和ABC全等,因為AD=AB,DE=BE,AE=AE,所以ADE和ABE全等,同理CDE和CBE全等.(2)相等的角有:BAE=DAE,ABE=ADE,AEB=AED,BCE=DCE,BEC=DEC,EBC=EDC,ADC=ABC.3.如圖所示,當(dāng)AB=CD,BC=DA時,圖中的ABC與CDA是否全等?并說明理由.解:ABCCDA.理由如下:在ABC和CDA中,因為AB=CD,BC=DA,AC=AC,所以ABCCDA(SSS).4.如圖所示,已知線段AB,CD相交于點O,AD,CB的延長線交于點E,OA=OC,EA=EC,請說明A=C.解:連接OE,如圖所示,在EAO和ECO中,OA=OC,EA=CE,OE=OE(公共邊),所以EAOECO(SSS).所以A=C(全等三角形的對應(yīng)角相等).第1課時探究活動1三角形全等的條件探究活動2知識運用,鞏固提升探究活動3三角形穩(wěn)定性的認(rèn)識一、教材作業(yè)【必做題】教材第99頁習(xí)題4.6數(shù)學(xué)理解第1,2題.【選做題】教材第100頁習(xí)題4.6問題解決第3題.二、課后作業(yè)【基礎(chǔ)鞏固】1.如圖所示,AC=BD,如果想增加一個有關(guān)邊相等的條件,就可以直接得到ABCBAD,那么這個條件是()A.BC=ADB.AB=BCC.BD=BCD.AC=BC2.如圖所示的是一個三角形測平架,已知AB=AC,在BC的中點D掛一個重錘,自然下垂.調(diào)整架身,使點A恰好在重錘線上,AD和BC的位置關(guān)系為.3.如圖所示,在四邊形ABCD中,AB=CB,AD=CD.試說明C=A.4.如圖所示,AC=AD,BC=BD,AB是CAD的平分線嗎?說明理由.【能力提升】5.如圖所示,AB=CD,AD=CB,E,F是AC上兩點,且AE=CF,DE=BF,那么圖中共有幾對全等三角形?請任選一對說明理由.【拓展探究】6.如圖所示,在ABC中,AB=AC,D為BC的中點,連接AD.(1)試判斷AD與BC的位置關(guān)系,并說明理由;(2)AD能否平分BAC;(3)請你用簡短的語言小結(jié)這一結(jié)論.【答案與解析】1.A(解析:因為AC=BD,AB=AB,BC=AD,所以ABCBAD(SSS).)2.AD垂直平分BC(解析:由題意可知ABDACD,所以AD垂直平分BC.)3.解:連接BD.在ABD和CBD中,因為AB=CB,AD=CD,BD=BD,所以ABDCBD.所以C=A.4.解:是.由于AC=AD,BC=BD,AB=AB,所以ABCABD(SSS),所以CAB=DAB,即AB平分CAD.5.解:3對,分別是ABCCDA,ABFCDE,ADECBF.選擇ABCCDA,理由:因為AB=CD,AC=AC,CB=AD,所以ABCCDA.6.解:(1)ADBC.理由:因為D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論