【解析版】廣東省潮州市2013年高考數(shù)學二模試卷(文科).doc_第1頁
【解析版】廣東省潮州市2013年高考數(shù)學二模試卷(文科).doc_第2頁
【解析版】廣東省潮州市2013年高考數(shù)學二模試卷(文科).doc_第3頁
【解析版】廣東省潮州市2013年高考數(shù)學二模試卷(文科).doc_第4頁
【解析版】廣東省潮州市2013年高考數(shù)學二模試卷(文科).doc_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省潮州市2013年高考數(shù)學二模試卷(文科)一、選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項符合題目要求.1(5分)(2013潮州二模)集合A=1,2,B=2,4,U=1,2,3,4,則CU(AB)=()A2B3C1,2,3D1,4考點:交、并、補集的混合運算專題:計算題分析:求出AB,然后求解CU(AB)即可解答:解:因為A=1,2,B=2,4,U=1,2,3,4,所以AB=1,2,4CU(AB)=3故選B點評:本題考查集合的基本運算,交、并、補的應用,考查計算能力2(5分)(2013潮州二模)復數(shù)的實部是()AiB1C1Di考點:復數(shù)的基本概念.專題:計算題分析:利用復數(shù)的運算法則和實部意義即可得出解答:解:=i+1,實部為1故選C點評:熟練掌握復數(shù)的運算法則和實部的意義是解題的關鍵3(5分)(2013潮州二模)拋物線y=x2的焦點坐標為()A(,0)B(,0)C(0,)D(0,)考點:拋物線的簡單性質.專題:計算題分析:先把拋物線整理標準方程,進而可判斷出焦點所在的坐標軸和p,進而求得焦點坐標解答:解:整理拋物線方程得x2=y焦點在y軸,p=焦點坐標為(0,)故選D點評:本題主要考查了拋物線的簡單性質求拋物線的焦點時,注意拋物線焦點所在的位置,以及拋物線的開口方向屬于基礎題4(5分)(2013潮州二模)某地區(qū)共有10萬戶居民,該地區(qū)城市住戶與農村住戶之比為4:6,根據(jù)分層抽樣方法,調查了該地區(qū)1 000戶居民冰箱擁有情況,調查結果如下表所示,那么可以估計該地區(qū)農村住戶中無冰箱的總戶數(shù)約為()城市農村有冰箱356(戶)440(戶)無冰箱44(戶)160(戶)A1.6萬戶B4.4萬戶C1.76萬戶D0.24萬戶考點:分層抽樣方法.專題:常規(guī)題型分析:先做出在抽查的1000戶住戶中,農村住戶且沒有冰箱的住戶所占的比例,用這個地區(qū)10萬戶居民,乘以做出的農村沒有冰箱的所占的比例,得到結果解答:解:在1000戶住戶中,農村住戶無有冰箱的有160戶,在所有居民中農村五冰箱的住戶所占的比例是由分層抽樣按比例抽取可得100000=16000故選A點評:本題考查分層抽樣,分層抽樣為保證每個個體等可能入樣,需遵循在各層中進行簡單隨機抽樣,每層樣本數(shù)量與每層個體數(shù)量的比與這層個體數(shù)量與總體容量的比相等5(5分)(2013潮州二模)x1是的()A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件考點:必要條件、充分條件與充要條件的判斷.專題:不等式的解法及應用分析:先解出的解,再判斷兩命題的關系即可解答:解:由,得:x1或x0,x1能推出;反之,則由x1或x0,不可以推出x1,故前者是后者的充分不必要條件,故選A點評:本題考查必要條件、充分條件、充要條件的判斷,解題時要注意不等式的合理運用6(5分)(2004上海)下列函數(shù)中,周期為1的奇函數(shù)是()Ay=12sin2xBCDy=sinxcosx考點:三角函數(shù)的周期性及其求法;正弦函數(shù)的奇偶性.專題:計算題分析:對A先根據(jù)二倍角公式化簡為y=cos2x為偶函數(shù),排除;對于B驗證不是奇函數(shù)可排除;對于C求周期不等于1排除;故可得答案解答:解:y=12sin2x=cos2x,為偶函數(shù),排除A對于函數(shù),f(x)=sin(2x+)sin(2x+),不是奇函數(shù),排除B對于,T=1,排除C對于y=sinxcosx=sin2x,為奇函數(shù),且T=,滿足條件故選D點評:本題主要考查三角函數(shù)的奇偶性和最小正周期的求法,一般先將函數(shù)化簡為y=Asin(wx+)的形式,再由最小正周期的求法T=、奇偶性的性質、單調性的判斷解題7(5分)(2013潮州二模)設m、n是兩條直線,、是兩個不同平面,下列命題正確的是()A若m,n,mn,則B若,m,n,則mnC若,=m,mn,則nD若,m,n,則mn考點:命題的真假判斷與應用;平面與平面之間的位置關系.專題:計算題分析:若m,n,mn,則與相交或平行;若,m,n,則m與n平行、相交或異面;若,=m,mn,則n與相交,或n;若,m,n,則mn解答:解:若m,n,mn,則與相交或平行,故A不正確;若,m,n,則m與n平行、相交或異面,故B不正確;若,=m,mn,則n與相交,或n,故C不正確;若,m,則m,再由n,得mn,故D正確故選D點評:本題考查命題的真假判斷及應用,是基礎題解題時要認真審題,注意平面的基本性質及其推論的應用8(5分)(2013潮州二模)點P(a,b)關于l:x+y+1=0對稱的點仍在l上,則a+b=()A1B1C2D0考點:點到直線的距離公式.專題:直線與圓分析:由點P(a,b)關于l:x+y+1=0對稱的點仍在l上,可知點P(a,b)在直線l上,代人解出即可解答:解:點P(a,b)關于l:x+y+1=0對稱的點仍在l上,點P(a,b)在直線l上,a+b+1=0,解得a+b=1故選A點評:正確理解“點P(a,b)關于l:x+y+1=0對稱的點仍在l上得點P(a,b)在直線l上”是解題的關鍵9(5分)(2013潮州二模)已知如程序框圖,則輸出的i是()A9B11C13D15考點:循環(huán)結構.專題:計算題分析:寫出前5次循環(huán)的結果,直到第五次滿足判斷框中的條件,執(zhí)行輸出解答:解:經過第一次循環(huán)得到S=13=3,i=5經過第二次循環(huán)得到S=35=15,i=7經過第三次循環(huán)得到S=157=105,i=9經過第四次循環(huán)得到S=1059=945,i=11經過第五次循環(huán)得到S=94511=10395,i=13此時,滿足判斷框中的條件輸出i故選C點評:解決程序框圖中的循環(huán)結構的問題,一般先按照框圖的流程寫出前幾次循環(huán)的結果,找規(guī)律10(5分)(2013潮州二模)為加強食品安全管理,某市質監(jiān)局擬招聘專業(yè)技術人員x名,行政管理人員y名,若x、y滿足,則z=3x+3y的最大值為()A4B12C18D24考點:二元一次不等式(組)與平面區(qū)域.專題:不等式的解法及應用分析:首先作出已知不等式組所對應的平面區(qū)域如圖,然后設直線l:z=3x+3y,將直線l進行平移,可得當直線l經過交點P(2,2)時,z達到最大值,且x,y都是正整數(shù),從而得到z的最大值解答:解:將不等式組,對應的平面區(qū)域作出,即圖中的三角形及其內部設直線l:z=3x+3y,將直線l進行平移,當l越向上平移時,z的值越大當直線l經過直線y=x與y=x+4的交點P(2,2)時,z有最大值,且x,y都是正整數(shù)z的最大值是23+32=12故選B點評:本題給出目標函數(shù)和線性約束條件,要我們求目標函數(shù)的最大值,著重考查了簡單線性規(guī)劃及其應用的知識點,屬于基礎題二、填空題:本大題共5小題,考生作答4小題,每小題5分,滿分20分.(一)必做題(1113題)(二)選做題(1415題,考生只能從中選做一題;如果二題都做,則按第14題評分)11(5分)(2013潮州二模)等比數(shù)列an中,公比q=2,前3項和為21,則a3+a4+a5=84考點:等比數(shù)列的性質.專題:計算題分析:因為數(shù)列an為等比數(shù)列,所以把a3+a4+a5用a1+a2+a3表示,再根據(jù)公比q=2,前3項和為21,就可求出a3+a4+a5的值解答:解:數(shù)列an為等比數(shù)列,a3=a1q2,a4=a2q2,a5=a3q2,a3+a4+a5=a1q2+a2q2+a3q2=q2(a1+a2+a3)又q=2,a3+a4+a5=4(a1+a2+a3)前3項和為21,a1+a2+a3=21a3+a4+a5=421=84故答案為84點評:本題主要考查等比數(shù)列的性質的應用,關鍵是能夠找出a3+a4+a5與a1+a2+a3的關系12(5分)(2013潮州二模),都是單位向量,且與的夾角為60,則|+|=考點:向量的模.專題:計算題分析:根據(jù)題意,先求出=,結合公式|+|2=2+2+2計算并開方可得答案解答:解:根據(jù)題意,|=|=1,且、的夾角為60,則=,則|+|2=2+2+2=3,故|+|=;故答案為點評:本題考查向量模的計算,求向量的模,一般用|2=2,轉化為數(shù)量積的運算13(5分)(2013潮州二模)比較大?。簂g9lg111(填“”,“”或“=”)考點:對數(shù)的運算性質;不等關系與不等式.專題:計算題分析:由基本不等式可得,lg9lg11,利用對數(shù)的運算性質即可判斷解答:解:lg90,lg110lg9lg11=(21故答案:點評:本題主要考查了基本不等式及對數(shù)的運算性質的簡單應用,屬于基礎試題14(5分)(2013潮州二模)(坐標系與參數(shù)方程選做題)在極坐標系中,點M(2,)到直線l:sin(+)=的距離為考點:簡單曲線的極坐標方程;點到直線的距離公式.專題:計算題分析:先求出點M和直線l的直角坐標方程,利用點到直線的距離公式求點M到直線l的距離解答:解:點M(2,)的直角坐標為(1, ),直線l:sin(+)= 的直角坐標方程為x+y1=0,點M到直線l的距離d=,故答案為點評:本題考查極坐標和直角坐標的互化,點到直線的距離公式的應用,應用點到直線的距離公式求點M到直線l的距離是解題的關鍵15(2013潮州二模)如圖,已知OA=OB=OC,ACB=45,則OBA的大小為45考點:圓周角定理.專題:計算題分析:結合題意,可分析得出點A、B、C在以點O位圓心,以OA長為半徑的圓周上,即可得出ACB和AOB分別為圓周角和圓心角,且兩角對應的弧相等,即可得出AOB=2ACB=80解答:解:根據(jù)題意,可以以點O為圓心,以OA為半徑作圓,即可得出點A、B、C均在圓周上,根據(jù)圓周角定理,故有AOB=2ACB=90由OAB為等腰三角形,所以OBA=45故答案為:45點評:本題主要考查了學生對知識的靈活運用能力和對問題的分析能力,屬于常規(guī)性試題,是學生練習的很好的題材三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.16(12分)(2013潮州二模)已知函數(shù)(1)在給定的坐標系內,用五點法畫出函數(shù)y=f(x)在一個周期內的圖象;(2)若,求sin2x的值考點:五點法作函數(shù)y=Asin(x+)的圖象;兩角和與差的正弦函數(shù).專題:三角函數(shù)的圖像與性質分析:(1)直接利用五點法,令2x+=0,2,列表求出對應的x即可找到五個特殊點的坐標,即可得到函數(shù)圖象(2)先根據(jù)已知條件求出cos(2x+)的值,在利用兩角差的正弦公式即可求出結論解答:解:(1)列表:x02f(x)01010(2分)描點,連線,得y=f(x)在一個周期內的圖象如右圖所示(5分)(描5個點正確給(1分),圖象基本正確給2分)(2)由已知得,(6分)(8分)從而:(12分)點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,用五點法作函數(shù)y=Asin(x+)在一個周期內的圖象,屬于中檔題17(12分)(2013潮州二模)口袋中有質地、大小完全相同的5個球,編號分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏(1)甲、乙按以上規(guī)則各摸一個球,求事件“甲贏且編號的和為6”發(fā)生的概率;(2)這種游戲規(guī)則公平嗎?試說明理由考點:等可能事件的概率.專題:計算題分析:(1)由題意知本題是一個等可能事件的概率,試驗發(fā)生包含的事件是甲、乙二人取出的數(shù)字共有55等可能的結果,滿足條件的事件包含的基本事件可以列舉出,根據(jù)概率公式得到結果(2)這種游戲規(guī)則不公平,甲勝即兩數(shù)字之和為偶數(shù)所包含的基本事件數(shù)為13個,做出甲勝的概率,根據(jù)對立事件的概率做出乙勝的概率,兩者相比較得到結論解答:解:(1)由題意知本題是一個等可能事件的概率,設“甲勝且兩數(shù)字之和為6”為事件A,事件A包含的基本事件為(1,5),(2,4)(3,3),(4,2),(5,1)共5個又甲、乙二人取出的數(shù)字共有55=25等可能的結果,即編號的和為6的概率為(2)這種游戲規(guī)則不公平 設甲勝為事件B,乙勝為事件C,則甲勝即兩數(shù)字之和為偶數(shù)所包含的基本事件數(shù)為13個:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5)甲勝的概率P(B)=,從而乙勝的概率P(C)=1=由于P(B)P(C),這種游戲規(guī)則不公平點評:本題主要考查古典概型,解決古典概型問題時最有效的工具是列舉,大綱中要求能通過列舉解決古典概型問題,也有一些題目需要借助于排列組合來計數(shù)18(14分)(2013潮州二模)已知橢圓C的兩個焦點為F1(1,0),F(xiàn)2(1,0),點在橢圓C上(1)求橢圓C的方程;(2)已知點B(2,0),設點P是橢圓C上任一點,求的取值范圍考點:平面向量數(shù)量積的運算;橢圓的標準方程.專題:計算題;圓錐曲線的定義、性質與方程分析:(1)設橢圓C的方程為,利用橢圓定義可求2a,進而可求a,結合已知c,利用b2=a2c2可求b,進而可求橢圓方程(2)先設,利用向量的數(shù)量積的坐標表示可求,結合點P在橢圓上及橢圓的性質可求解答:解:(1)設橢圓C的方程為(1分)由橢圓定義,(4分),c=1,b2=a2c2=1(5分)故所求的橢圓方程為(6分)(2)設(7分)(9分)點P在橢圓上,(10分)(12分)x=1,有最小值;,有最大值,的范圍是(14分)點評:本題主要考查了利用橢圓的定義及性質求解橢圓方程及橢圓性質的簡單應用19(14分)(2013潮州二模)如圖,四邊形ABCD為矩形,AD平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點,且BF平面ACE,BDAC=G(1)求證:AE平面BCE;(2)求證:AE平面BFD;(3)求三棱錐EADC的體積考點:直線與平面垂直的判定;棱柱、棱錐、棱臺的體積;直線與平面平行的判定.分析:(1)由已知中AD平面ABE,ADBC,得到BC平面ABE,即AEBC,又由BF平面ACE,即BFAE,再由線面垂直的判定定理即可得到AE平面BCE;(2)連接GF,由已知BF平面ACE,我們易得GFAE,由線面平行的判定定理,可以得到AE平面BFD;(3)由已知可得三棱錐EADC的體積等于三棱錐EABC的體積,求出三棱錐EABC的體積,即可得到棱錐EADC的體積解答:解:(1)證明:AD平面ABE,ADBC,BC平面ABE,AEBC(2分)又BF平面ACE,BFAE,BCBF=B,AE平面BCE(4分)(2)連接GF,BF平面ACE,BFCEBE=BC,F(xiàn)為EC的中點;矩形ABCD中,G為兩對角線的交點且是兩線段的中點,GFAE,(7分)GF平面BFD,AE平面BFD,AE平面BFD(8分)(3)三棱錐EADC的體積等于三棱錐EABC的體積VEABC=故棱錐EADC的體積為點評:本題考查的知識點是直線與平面垂直的判定,棱錐的體積,及直線與平面平行的判定,其中熟練掌握空間中直線與平面的平行及垂直的判定、性質、定義、幾何特征是解答此類問題的關鍵20(14分)(2013潮州二模)已知各項都不為零的數(shù)列an的前n項和為Sn,且,a1=1(1)求數(shù)列an的通項公式;(2)求證:考點:數(shù)列遞推式;數(shù)列的求和.專題:等差數(shù)列與等比數(shù)列分析:(1)利用an=SnSn1(n2)即可得到an+1an1=2分n為奇數(shù)和偶數(shù)討論即可得到an;(2)利用(1)通過放縮,利用“裂項求和”即可證明解答:(1)解:,得an0,an+1an1=2數(shù)列an的奇數(shù)項組成首項為a1=1,公差為2的等差數(shù)列;偶數(shù)項組成首項為a2,公差為2的等差數(shù)列a1=1,a2n1=1+(n1)2=2n1,a2n=2+(n1)2=2n數(shù)列an的通項公式為an=n(nN*);(2)證明:當n3時,則當n=1時,; 當n=2時,;點評:熟練掌握數(shù)列的通項與其前n項和公式之間的關系、分類討論思想方法、放縮法、裂項求和法是解題的關鍵21(14分)(2013潮州二模)已知函數(shù)f(x)=x33x(1)求曲線y=f(x)在點x=2處的切線方程;(2)若過點A(1,m)(m2)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍、考點:利用導數(shù)研究曲線上某點切線方程.專題:計算題分析:(1)先求導數(shù)f(x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論