全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
9.2 空間向量及其運(yùn)算教學(xué)目標(biāo):知識(shí)目標(biāo):空間向量;相等的向量;空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律;能力目標(biāo):理解空間向量的概念,掌握其表示方法;會(huì)用圖形說(shuō)明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題德育目標(biāo):學(xué)會(huì)用發(fā)展的眼光看問(wèn)題,認(rèn)識(shí)到事物都是在不斷的發(fā)展、進(jìn)化的,會(huì)用聯(lián)系的觀點(diǎn)看待事物教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律教學(xué)難點(diǎn):應(yīng)用向量解決立體幾何問(wèn)題教學(xué)方法:討論式教具準(zhǔn)備:PowerPoint課件教學(xué)過(guò)程:(在演示課件的同時(shí)講授).復(fù)習(xí)引入師在第五章平面向量中,我們學(xué)習(xí)了有關(guān)平面向量的一些知識(shí),什么叫做向量?向量是怎樣表示的呢?生既有大小又有方向的量叫向量向量的表示方法有:用有向線段表示;用字母a、b等表示;用有向線段的起點(diǎn)與終點(diǎn)字母:師數(shù)學(xué)上所說(shuō)的向量是自由向量,也就是說(shuō)在保持向量的方向、大小的前提下可以將向量進(jìn)行平移,由此我們可以得出向量相等的概念,請(qǐng)同學(xué)們回憶一下生長(zhǎng)度相等且方向相同的向量叫相等向量.師學(xué)習(xí)了向量的有關(guān)概念以后,我們學(xué)習(xí)了向量的加減以及數(shù)乘向量運(yùn)算:向量的加法:向量的減法:實(shí)數(shù)與向量的積:實(shí)數(shù)與向量a的積是一個(gè)向量,記作a,其長(zhǎng)度和方向規(guī)定如下:(1)|a|a|(2)當(dāng)0時(shí),a與a同向; 當(dāng)0時(shí),a與a反向; 當(dāng)0時(shí),a0.師關(guān)于向量的以上幾種運(yùn)算,請(qǐng)同學(xué)們回憶一下,有哪些運(yùn)算律呢?生向量加法和數(shù)乘向量滿足以下運(yùn)算律加法交換律:abba加法結(jié)合律:(ab)ca(bc)數(shù)乘分配律:(ab)ab師今天我們將在第五章平面向量的基礎(chǔ)上,類比地引入空間向量的概念、表示方法、相同或向等關(guān)系、空間向量的加法、減法、數(shù)乘以及這三種運(yùn)算的運(yùn)算率,并進(jìn)行一些簡(jiǎn)單的應(yīng)用請(qǐng)同學(xué)們閱讀課本P26P27.新課講授師如同平面向量的概念,我們把空間中具有大小和方向的量叫做向量例如空間的一個(gè)平移就是一個(gè)向量那么我們?cè)鯓颖硎究臻g向量呢?相等的向量又是怎樣表示的呢?生與平面向量一樣,空間向量也用有向線段表示,并且同向且等長(zhǎng)的有向線段表示同一向量或相等的向量師由以上知識(shí)可知,向量在空間中是可以平移的空間任意兩個(gè)向量都可以用同一平面內(nèi)的兩條有向線段表示因此我們說(shuō)空間任意兩個(gè)向量是共面的師空間向量的加法、減法、數(shù)乘向量各是怎樣定義的呢?生空間向量的加法、減法、數(shù)乘向量的定義與平面向量的運(yùn)算一樣:=a+b,(指向被減向量),a 師空間向量的加法與數(shù)乘向量有哪些運(yùn)算律呢?請(qǐng)大家驗(yàn)證這些運(yùn)算律生空間向量加法與數(shù)乘向量有如下運(yùn)算律:加法交換律:a + b = b + a;加法結(jié)合律:(a + b) + c =a + (b + c);(課件驗(yàn)證)數(shù)乘分配律:(a + b) =a +b師空間向量加法的運(yùn)算律要注意以下幾點(diǎn):首尾相接的若干向量之和,等于由起始向量的起點(diǎn)指向末尾向量的終點(diǎn)的向量即:因此,求空間若干向量之和時(shí),可通過(guò)平移使它們轉(zhuǎn)化為首尾相接的向量首尾相接的若干向量若構(gòu)成一個(gè)封閉圖形,則它們的和為零向量即:兩個(gè)向量相加的平行四邊形法則在空間仍然成立因此,求始點(diǎn)相同的兩個(gè)向量之和時(shí),可以考慮用平行四邊形法則例已知平行六面體(如圖),化簡(jiǎn)下列向量表達(dá)式,并標(biāo)出化簡(jiǎn)結(jié)果的向量:說(shuō)明:平行四邊形ABCD平移向量 a 到ABCD的軌跡所形成的幾何體,叫做平行六面體記作ABCDABCD平行六面體的六個(gè)面都是平行四邊形,每個(gè)面的邊叫做平行六面體的棱解:(見(jiàn)課本P27)說(shuō)明:由第2小題可知,始點(diǎn)相同且不在同一個(gè)平面內(nèi)的三個(gè)向量之和,等于以這三個(gè)向量為棱的平行六面體的以公共始點(diǎn)為始點(diǎn)的對(duì)角線所表示的向量,這是平面向量加法的平行四邊形法則向空間的推廣.課堂練習(xí)課本P27練習(xí).課時(shí)小結(jié)平面向量?jī)H限于研究平面圖形在它所在的平面內(nèi)的平移,而空間向量研究的是空間的平移,它們的共同點(diǎn)都是指“將圖形上所有點(diǎn)沿相同的方向移動(dòng)相同的長(zhǎng)度”,空間的平移包含平面的平移關(guān)于向量算式的化簡(jiǎn),要注意解題格式、步驟和方法.課后作業(yè)課本P27練習(xí)預(yù)習(xí)課本P28P30,預(yù)習(xí)提綱: 怎樣的向量叫做共線向量??jī)蓚€(gè)向量共線的充要條件是什么?空間中點(diǎn)在直線上的充要條件是什么?什么叫做空間直線的向量參數(shù)表示式?怎樣的向量叫做共面向量?向量p與不共線向量a、b共面的充要條件是什么?空間一點(diǎn)P在平面MAB內(nèi)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45154-2024老齡化社會(huì)年齡包容性勞動(dòng)力通用要求與指南
- GB/T 18487.5-2024電動(dòng)汽車傳導(dǎo)充電系統(tǒng)第5部分:用于GB/T 20234.3的直流充電系統(tǒng)
- racemic-9-Nor-9β-hydroxy-Hexahydrocannabinol-生命科學(xué)試劑-MCE-7978
- Glyceryl-dilaurate-生命科學(xué)試劑-MCE-3370
- 二零二五年度美發(fā)店租賃合同包含美發(fā)店品牌形象維護(hù)條款
- 2025年度智能化舞臺(tái)搭建安全責(zé)任及技術(shù)服務(wù)合同
- 2025年度銀行貸款反擔(dān)保合同違約責(zé)任合同
- 2025年度父母出資購(gòu)房子女房產(chǎn)增值收益分配協(xié)議書
- 施工日志填寫樣本屋面防水工程
- 職場(chǎng)技能提升與自主創(chuàng)業(yè)的實(shí)踐案例分析
- 急性缺血性卒中再灌注治療指南2024解讀
- 暑假假期安全教育(課件)-小學(xué)生主題班會(huì)
- 2025年中考英語(yǔ)總復(fù)習(xí):閱讀理解練習(xí)題30篇(含答案解析)
- 陜西省英語(yǔ)中考試卷與參考答案(2024年)
- 中建醫(yī)院幕墻工程專項(xiàng)方案
- 基于OBE理念的世界現(xiàn)代史教學(xué)與學(xué)生歷史思維培養(yǎng)探究
- 施工現(xiàn)場(chǎng)揚(yáng)塵污染治理巡查記錄
- 2024年列車員技能競(jìng)賽理論考試題庫(kù)500題(含答案)
- 中南大學(xué)《藥理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《無(wú)人機(jī)測(cè)繪技術(shù)》項(xiàng)目3任務(wù)2無(wú)人機(jī)正射影像數(shù)據(jù)處理
- 《ISO 55013-2024 資產(chǎn)管理-數(shù)據(jù)資產(chǎn)管理指南》專業(yè)解讀和應(yīng)用指導(dǎo)材料(雷澤佳編制-2024B0)-121-240
評(píng)論
0/150
提交評(píng)論