全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
24.1.3 弧、弦、圓心角 教學(xué)內(nèi)容 1圓心角的概念 2有關(guān)弧、弦、圓心角關(guān)系的定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等 3定理的推論:在同圓或等圓中,如果兩條弧相等,那么它們所對(duì)的圓心角相等,所對(duì)的弦相等 在同圓或等圓中,如果兩條弦相等,那么它們所對(duì)的圓心角相等,所對(duì)的弧也相等 教學(xué)目標(biāo) 了解圓心角的概念:掌握在同圓或等圓中,圓心角、弦、弧中有一個(gè)量的兩個(gè)相等就可以推出其它兩個(gè)量的相對(duì)應(yīng)的兩個(gè)值就相等,及其它們?cè)诮忸}中的應(yīng)用 通過(guò)復(fù)習(xí)旋轉(zhuǎn)的知識(shí),產(chǎn)生圓心角的概念,然后用圓心角和旋轉(zhuǎn)的知識(shí)探索在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等,最后應(yīng)用它解決一些具體問(wèn)題 重難點(diǎn)、關(guān)鍵 1重點(diǎn):定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)弦也相等及其兩個(gè)推論和它們的應(yīng)用 2難點(diǎn)與關(guān)鍵:探索定理和推導(dǎo)及其應(yīng)用 教學(xué)過(guò)程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請(qǐng)同學(xué)們完成下題已知OAB,如圖所示,作出繞O點(diǎn)旋轉(zhuǎn)30、45、60的圖形 老師點(diǎn)評(píng):繞O點(diǎn)旋轉(zhuǎn),O點(diǎn)就是固定點(diǎn),旋轉(zhuǎn)30,就是旋轉(zhuǎn)角BOB=30 二、探索新知如圖所示,AOB的頂點(diǎn)在圓心,像這樣頂點(diǎn)在圓心的角叫做圓心角 (學(xué)生活動(dòng))請(qǐng)同學(xué)們按下列要求作圖并回答問(wèn)題:如圖所示的O中,分別作相等的圓心角AOB和AOB將圓心角AOB繞圓心O旋轉(zhuǎn)到AOB的位置,你能發(fā)現(xiàn)哪些等量關(guān)系?為什么? =,AB=AB 理由:半徑OA與OA重合,且AOB=AOB 半徑OB與OB重合 點(diǎn)A與點(diǎn)A重合,點(diǎn)B與點(diǎn)B重合 與重合,弦AB與弦AB重合 =,AB=AB 因此,在同一個(gè)圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等 在等圓中,相等的圓心角是否也有所對(duì)的弧相等,所對(duì)的弦相等呢?請(qǐng)同學(xué)們現(xiàn)在動(dòng)手作一作(學(xué)生活動(dòng))老師點(diǎn)評(píng):如圖1,在O和O中,分別作相等的圓心角AOB和AOB得到如圖2,滾動(dòng)一個(gè)圓,使O與O重合,固定圓心,將其中的一個(gè)圓旋轉(zhuǎn)一個(gè)角度,使得OA與OA重合 (1) (2) 你能發(fā)現(xiàn)哪些等量關(guān)系?說(shuō)一說(shuō)你的理由? 我能發(fā)現(xiàn):=,AB=A/B/ 現(xiàn)在它的證明方法就轉(zhuǎn)化為前面的說(shuō)明了,這就是又回到了我們的數(shù)學(xué)思想上去呢化歸思想,化未知為已知,因此,我們可以得到下面的定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等 同樣,還可以得到: 在同圓或等圓中,如果兩條弧相等,那么它們所對(duì)的圓心角相等,所對(duì)的弦也相等 在同圓或等圓中,如果兩條弦相等,那么它們所對(duì)的圓心角相等,所對(duì)的弧也相等 (學(xué)生活動(dòng))請(qǐng)同學(xué)們現(xiàn)在給予說(shuō)明一下 請(qǐng)三位同學(xué)到黑板板書(shū),老師點(diǎn)評(píng) 例1如圖,在O中,AB、CD是兩條弦,OEAB,OFCD,垂足分別為EF (1)如果AOB=COD,那么OE與OF的大小有什么關(guān)系?為什么?(2)如果OE=OF,那么與的大小有什么關(guān)系?AB與CD的大小有什么關(guān)系?為什么?AOB與COD呢? 分析:(1)要說(shuō)明OE=OF,只要在直角三角形AOE和直角三角形COF中說(shuō)明AE=CF,即說(shuō)明AB=CD,因此,只要運(yùn)用前面所講的定理即可(2)OE=OF,在RtAOE和RtCOF中, 又有AO=CO是半徑,RtAOERtCOF,AE=CF,AB=CD,又可運(yùn)用上面的定理得到= 解:(1)如果AOB=COD,那么OE=OF 理由是:AOB=COD AB=CD OEAB,OFCD AE=AB,CF=CD AE=CF 又OA=OC RtOAERtOCF OE=OF (2)如果OE=OF,那么AB=CD,=,AOB=COD 理由是: OA=OC,OE=OF RtOAERtOCF AE=CF 又OEAB,OFCD AE=AB,CF=CD AB=2AE,CD=2CF AB=CD =,AOB=COD 三、鞏固練習(xí)教材 練習(xí)1 四、應(yīng)用拓展 例2如圖3和圖4,MN是O的直徑,弦AB、CD相交于MN上的一點(diǎn)P,APM=CPM (1)由以上條件,你認(rèn)為AB和CD大小關(guān)系是什么,請(qǐng)說(shuō)明理由(2)若交點(diǎn)P在O的外部,上述結(jié)論是否成立?若成立,加以證明;若不成立,請(qǐng)說(shuō)明理由 (3) (4) 分析:(1)要說(shuō)明AB=CD,只要證明AB、CD所對(duì)的圓心角相等,只要說(shuō)明它們的一半相等 上述結(jié)論仍然成立,它的證明思路與上面的題目是一模一樣的 解:(1)AB=CD 理由:過(guò)O作OE、OF分別垂直于AB、CD,垂足分別為E、F APM=CPM 1=2 OE=OF 連結(jié)OD、OB且OB=OD RtOFDRtOEB DF=BE 根據(jù)垂徑定理可得:AB=CD (2)作OEAB,OFCD,垂足為E、F APM=CPN且OP=OP,PEO=PFO=90 RtOPERtOPF OE=OF 連接OA、OB、OC、OD 易證RtOBERtODF,RtOAERtOCF 1+2=3+4 AB=CD 五、歸納總結(jié)(學(xué)生歸
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025下半年廣東江門(mén)市城市地理信息中心招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年安徽省馬鞍山市博望區(qū)事業(yè)單位招聘8人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年四川自貢市事業(yè)單位高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年廣東省廣州市增城區(qū)應(yīng)急管理局及下屬事業(yè)單位招用16人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年北京市門(mén)頭溝區(qū)事業(yè)單位招聘169人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 礦產(chǎn)資源礦山采礦施工合同
- 城市綠化道路節(jié)能路燈合同模板
- 醫(yī)療衛(wèi)生項(xiàng)目誠(chéng)信承諾書(shū)
- 冷凍庫(kù)施工合同零售業(yè)
- 倉(cāng)儲(chǔ)物流資產(chǎn)保管辦法
- 山東省濟(jì)南市歷下區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末語(yǔ)文試題
- 火災(zāi)事故中的通風(fēng)與煙氣控制
- 2024年完整離婚協(xié)議書(shū)下載-(含多款)
- 蒙牛數(shù)字化 營(yíng)養(yǎng)世界
- 2024年度醫(yī)院燒傷科接診統(tǒng)計(jì)報(bào)告課件
- 《英國(guó)教育》課件
- 人教版2023-2024學(xué)年四年級(jí)數(shù)學(xué)上冊(cè)典型例題系列 第四單元:面積問(wèn)題專(zhuān)項(xiàng)練習(xí)(解析版)
- W紅茶加工與品質(zhì)形成紅茶加工工藝與品質(zhì)形成w紅茶加工與品質(zhì)形成紅茶加工工藝與品質(zhì)形成
- 【倫理課件】死亡與安樂(lè)死
- 腎造瘺護(hù)理查房
- 歷代反腐完整
評(píng)論
0/150
提交評(píng)論