




免費預(yù)覽已結(jié)束,剩余1頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1.3.2函數(shù)的極值與導(dǎo)數(shù)(2課時)教學(xué)目標(biāo):1.理解極大值、極小值的概念;2.能夠運用判別極大值、極小值的方法來求函數(shù)的極值;3.掌握求可導(dǎo)函數(shù)的極值的步驟;教學(xué)重點:極大、極小值的概念和判別方法,以及求可導(dǎo)函數(shù)的極值的步驟.教學(xué)難點:對極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟.教學(xué)過程:一創(chuàng)設(shè)情景觀察圖3.3-8,我們發(fā)現(xiàn),時,高臺跳水運動員距水面高度最大那么,函數(shù)在此點的導(dǎo)數(shù)是多少呢?此點附近的圖像有什么特點?相應(yīng)地,導(dǎo)數(shù)的符號有什么變化規(guī)律?放大附近函數(shù)的圖像,如圖3.3-9可以看出;在,當(dāng)時,函數(shù)單調(diào)遞增,;當(dāng)時,函數(shù)單調(diào)遞減,;這就說明,在附近,函數(shù)值先增(,)后減(,)這樣,當(dāng)在的附近從小到大經(jīng)過時,先正后負,且連續(xù)變化,于是有對于一般的函數(shù),是否也有這樣的性質(zhì)呢?附:對極大、極小值概念的理解,可以結(jié)合圖象進行說明.并且要說明函數(shù)的極值是就函數(shù)在某一點附近的小區(qū)間而言的. 從圖象觀察得出,判別極大、極小值的方法.判斷極值點的關(guān)鍵是這點兩側(cè)的導(dǎo)數(shù)異號二新課講授 1問題:圖3.3-1(1),它表示跳水運動中高度隨時間變化的函數(shù)的圖像,圖3.3-1(2)表示高臺跳水運動員的速度隨時間變化的函數(shù)的圖像運動員從起跳到最高點,以及從最高點到入水這兩段時間的運動狀態(tài)有什么區(qū)別?通過觀察圖像,我們可以發(fā)現(xiàn):(1) 運動員從起點到最高點,離水面的高度隨時間的增加而增加,即是增函數(shù)相應(yīng)地,(2) 從最高點到入水,運動員離水面的高度隨時間的增加而減少,即是減函數(shù)相應(yīng)地,2函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系觀察下面函數(shù)的圖像,探討函數(shù)的單調(diào)性與其導(dǎo)數(shù)正負的關(guān)系如圖3.3-3,導(dǎo)數(shù)表示函數(shù)在點處的切線的斜率在處,切線是“左下右上”式的,這時,函數(shù)在附近單調(diào)遞增;在處,切線是“左上右下”式的,這時,函數(shù)在附近單調(diào)遞減結(jié)論:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系在某個區(qū)間內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞減說明:(1)特別的,如果,那么函數(shù)在這個區(qū)間內(nèi)是常函數(shù)3求解函數(shù)單調(diào)區(qū)間的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間三典例分析例1已知導(dǎo)函數(shù)的下列信息:當(dāng)時,;當(dāng),或時,;當(dāng),或時,試畫出函數(shù)圖像的大致形狀解:當(dāng)時,可知在此區(qū)間內(nèi)單調(diào)遞增;當(dāng),或時,;可知在此區(qū)間內(nèi)單調(diào)遞減;當(dāng),或時,這兩點比較特殊,我們把它稱為“臨界點”綜上,函數(shù)圖像的大致形狀如圖3.3-4所示例2判斷下列函數(shù)的單調(diào)性,并求出單調(diào)區(qū)間(1); (2)(3); (4)解:(1)因為,所以, 因此,在R上單調(diào)遞增,如圖3.3-5(1)所示(2)因為,所以, 當(dāng),即時,函數(shù)單調(diào)遞增;當(dāng),即時,函數(shù)單調(diào)遞減;函數(shù)的圖像如圖3.3-5(2)所示(3) 因為,所以, 因此,函數(shù)在單調(diào)遞減,如圖3.3-5(3)所示(4) 因為,所以 當(dāng),即 時,函數(shù) ;當(dāng),即 時,函數(shù) ;函數(shù)的圖像如圖3.3-5(4)所示注:(3)、(4)生練例3 如圖3.3-6,水以常速(即單位時間內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中,請分別找出與各容器對應(yīng)的水的高度與時間的函數(shù)關(guān)系圖像分析:以容器(2)為例,由于容器上細下粗,所以水以常速注入時,開始階段高度增加得慢,以后高度增加得越來越快反映在圖像上,(A)符合上述變化情況同理可知其它三種容器的情況解:思考:例3表明,通過函數(shù)圖像,不僅可以看出函數(shù)的增減,還可以看出其變化的快慢結(jié)合圖像,你能從導(dǎo)數(shù)的角度解釋變化快慢的情況嗎? 一般的,如果一個函數(shù)在某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化的快,這時,函數(shù)的圖像就比較“陡峭”;反之,函數(shù)的圖像就“平緩”一些如圖3.3-7所示,函數(shù)在或內(nèi)的圖像“陡峭”,在或內(nèi)的圖像“平緩”例4 求證:函數(shù)在區(qū)間內(nèi)是減函數(shù)證明:因為當(dāng)即時,所以函數(shù)在區(qū)間內(nèi)是減函數(shù)說明:證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性步驟:(1)求導(dǎo)函數(shù);(2)判斷在內(nèi)的符號;(3)做出結(jié)論:為增函數(shù),為減函數(shù)例5 已知函數(shù) 在區(qū)間上是增函數(shù),求實數(shù)的取值范圍解:,因為在區(qū)間上是增函數(shù),所以對恒成立,即對恒成立,解之得:所以實數(shù)的取值范圍為說明:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍是一種常見的題型,常利用導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系:即“若函數(shù)單調(diào)遞增,則;若函數(shù)單調(diào)遞減,則”來求解,注意此時公式中的等號不能省略,否則漏解四課堂練習(xí)1求下列函數(shù)的單調(diào)區(qū)間1.f(x)=2x36x2+7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城鎮(zhèn)污水管網(wǎng)建設(shè)項目安全管理方案(參考模板)
- xx河流排水防澇設(shè)施建設(shè)項目數(shù)字化方案(范文)
- 城鎮(zhèn)污水管網(wǎng)建設(shè)項目申請報告(模板范文)
- 鄉(xiāng)村振興戰(zhàn)略下能源電力行業(yè)面臨的挑戰(zhàn)及對策
- 物流與供應(yīng)鏈管理教案
- 五年級學(xué)期學(xué)習(xí)計劃(34篇)
- 2025年光學(xué)纖維面板系列項目發(fā)展計劃
- 五年級科學(xué)上冊教案 - 5《身體的“聯(lián)絡(luò)員”》 教科版
- 中暑現(xiàn)場應(yīng)急處置方案
- 2025年大流量羅茨鼓風(fēng)機項目發(fā)展計劃
- 宿舍清潔服務(wù)方案(3篇)
- 校園清廉建設(shè)活動方案
- 總經(jīng)理半年度總結(jié)述職報告
- 精神科護理進修總結(jié)
- 維克多高中英語3500詞匯
- (約克)機組熱回收技術(shù)
- (完整版)常見腫瘤AJCC分期手冊第八版(中文版)
- 托瑪琳養(yǎng)生碗gg課件
- 水產(chǎn)養(yǎng)殖示范基地建設(shè)項目實施方案
- 行政后勤人員 三級安全教育培訓(xùn)記錄卡
- DB52∕T 1480-2019 GLW-8430連棟塑料薄膜溫室通用技術(shù)規(guī)范
評論
0/150
提交評論