




已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
DOI10.1007/s00170-003-1860-2ORIGINALARTICLEIntJAdvManufTechnol(2005)25:130139J.SongJ.MouAnear-optimalpartsetupalgorithmfor5-axismachiningusingaparallelkinematicmachineReceived:19February2003/Accepted:4July2003/Publishedonline:28July2004Springer-VerlagLondonLimited2004AbstractAnear-optimalpartsetupmodel(NOPSM)isde-veloped.Thepurposeofthismodelistofindthenear-optimalpartsetuppositionandorientationbasedontheworkspace,stiff-nessandaccuracycapabilityofaparallelkinematicmachinethatcanbeusedfor5-axismachining.TobuildtheproposedNOPSM,theknowledgeonthehexapodkinematics,workspace,stiffness,structuralimperfection,nonuniformthermalgradientandaccuracyisrequired.Thus,itisacomprehensiveperform-ancecapabilitystudyforaparallelkinematicmachine.Thepro-posedmodelisasoftwaresolutionconcepttoimprovethema-chinesperformance.Itisverycosteffectiveandcanalsobemodifiedforother5-axismachinetoolapplications.Keywords5-axismachiningParallelkinematicPartsetupPerformanceenhancement1IntroductionManyCAD/CAMalgorithmscansimulatethemachiningpro-cessforslantedandfree-formsurfacesaswellasgeneratethecorrespondingNCcodes;however,thetraditionalthree-degree-of-freedomCNCmachinerestrictsthepotencyofthesealgo-rithms.Oneoftheadvantagesofparallelkinematic(hexapod)machineoverthetraditional3-axismachinecentreisitsdex-terityandflexibility17.Theoretically,thehexapodmachineunderstudypossessessixdegreesoffreedom.Actually,theplat-formorientationaroundthez-axiscoincideswiththemachinespindlerotation;thus,thishexapodmachinehasfiveeffectivede-greesoffreedomformachining.Manypartsthathaveslantedorfree-formsurfacescanbegeneratedonahexapodmachinewithonesetup.Anotheradvantageofthehexapodmachineisitshigherstiffnesscomparedtotheseriallinkedstructuralma-J.SongJ.Mou(a117)DepartmentofIndustrialEngineering,ArizonaStateUniversity,Tempe,AZ85287-5906,USAE-mail:chinesothatthehigh-speedoperationcanbecarriedoutonthismachine8,9.However,adrawbackthatcomeswiththedexterityofthehexapodmachineisitsrelativelysmallworkspace.Likeallmanufacturingequipment,imperfectstructureandnon-uniformthermal-gradient-relatederrorsalwaysexisttodegradethema-chinesperformanceinproducingqualityproducts1014.Duetotheuniquecharacteristicsofparallelkinematicstructures,themachineinaccuracydistributionwithinitsworkspacewillchangeastheplatformpositionandorientationchange.Mean-while,itsstructuralstiffnessvariesatdifferentplatformpositionsandorientations.Therefore,basedontheinformationonthehexapodsnom-inalkinematicstructure,structuralerrors,thermalerrors,andworkspaceandstiffnessanalyses,anear-optimalpartsetupmodel(NOPSM)couldbedevelopedtosub-optimallysetupapartwithintheworkspaceofahexapodmachine.Thecon-ceptofthisalgorithmisgenericandcanbeeasilyintegratedwithexistingkinematicandthermalmodelsofanyotherparallelkine-maticmachineswithsimplemodifications.Thisapproachcouldalsobeemployedintheapplicationofseriallylinkedrobotsandmachinetools.ForNOPSM,thefirstconstraintisthatallsurfacestobema-chinedneedtobelocatedwithinthehexapodsworkspace.Oncetheworkspaceconditionissatisfied,thenextcriterionappliedtofindthenear-optimalpartsetupisthehexapodmachinesstiff-nessanalysis.Togeneratehigh-qualityproduct,thepartneedstobeplacedatthemostdesirablepositionsothatthemachinecanpossessthehigheststiffnessandaccuracywhilegeneratingthepart.Thealgorithmsderivedin15tofindtherelationshipbetweenthemachinesstructural/thermalerrorsanditsaccuracydistributionbasedonthemachinesstructuralcharacteristicsandmachinestemperaturegradientprofilesareadoptedforsearch-ingthenear-optimalpartpositioningandorientation.Inpractice,thehexapodmachinesdynamicsandcontrolsys-temshouldalsobeconsideredfornear-optimalpartpositioningsearches.However,duetotheproblemscomplexityandtolim-itationsonthescopeofthisresearch,wewillnotdiscussthosetopicshere.1312WorkspaceanalysisTheworkspaceistheworkingvolumeofamachinewithspe-cifictoolsandfeasiblespindlepositionandorientation.Inordertodeterminetheusableworkspaceofthehexapodmachine,ade-rivedkinematicmodel15canbeappliedtodeterminethestrutlength,thejointrotationangleandmobileplatformpositionandorientation.Twoconstraintsaretakenintoaccountinthisworkspaceanalysis.First,themachinesstrutlengthlimitations(maximumlength)definethelowerboundoftheworkspace.Fig.1.HexapodmachineworkspaceanalysisflowchartSecond,themachinessphericaljointrotationallimitationsde-finetheupperboundoftheworkspace.Althoughthemachinesminimumstrutlengthlimitationshouldalsobetakenintoconsid-eration,thisconstraintisoverriddenbythesphericaljointrota-tionallimitationindeterminingthemachinesupperworkspace.AnalgorithmforthedeterminationofhexapodworkspaceforaspecificplatformorientationisshowninFig.1.Differentplatformorientationshavediversemachinework-spaceenvelopes.Byupdatingtheorientationinformation,theworkspaceenvelopfordifferentmachineplatformorientationscanbedetermined.InFigs.2and3,theorientationsaroundthe132Fig.2.Workspaceenvelopewithspindleorientationangle000Fig.3.Workspaceenvelopewithspindleorientationangle3000y-andz-axess,and,arekeptconstant;onlytheorientationanglearoundthex-axis,ischanged.Astheorientationanglearoundthex-axisincreases,theworkspaceistiltedandthez-dimensionoftheworkspaceenvelopeisdecreased.Thelargertheorientationangle,themoreseveretheworkspacetilting.Theworkspaceanalysisresultsshowthatasimilarphenomenonoc-curswhentheorientationanglearoundthey-axis,ischanged,butwithdifferenttiltingdirection.Sincetheplatformorientationanglearoundthez-axis,coincideswiththespindlerotatingdi-rection,theeffectofissuperimposedonspindlerotationandthusnottakenintoconsiderationinworkspaceenvelopeanalysis.TheNOPSMadoptstheworkspaceanalysistodeterminewhetherornotthemachiningsurfacesarewithinthehexapodworkspace.Toensuretheefficiencyofthealgorithm,thefollow-ingtwoconstraintsaretestedforalltheselectedpointsonthesurfacetobemachined:1.Thehexapodmaximumstrutlengthconstraint.2.Thehexapodmaximumjointanglerotationconstraint.Ifalltheselectedpointsonthemachiningsurfacessatisfytheabovetwoconstraints,structuralstiffnessandmachineaccu-racywillthenbeanalysedtoidentifythenear-optimalpartsetuplocationandorientation.3StiffnessanalysisForaparallelmechanism,thereusuallyisaclosed-formsolutionfortheinversekinematics.Theinversekinematicsforthehexa-podmachinecouldbeusedtocalculatethesix-strutlengthbasedontheplatformpositionandorientationinformation16.Thiscanbeexpressedasfollows:Li=fi(x,y,z,).(1)Theapplicationofthechainruleyieldsdifferentialsofli(i=1,2,.,6)asfunctionsofthedifferentialsofx,y,z,.li=fixx+fiyy+fizz+fi+fi+fi.(2)DividingbothsidesofEq.1bythedifferentialtimeelementtandexpressingitinmatrixformatyieldsl1l2l3l4l5l6=f1xf1yf1zf1f1f1f2xf2yf2zf2f2f2.f6xf6yf6zf6f6f6xyz.(3)NotethestandardJocobianexpression,v=Jl.Bylettingl=J1v,theinverseJocobianmatrix,J1,facilitatesthemappingoftheCartesianspacevelocityvectorvintothestrutdisplace-mentratevector.Applyingtheprincipleofvirtualworktoanarbitrarymech-anismallowsonetoequateworkdoneinCartesianspacetermstoworkdoneinconfigurationspaceterms.Specifically,workinCartesiantermsisassociatedwithaCartesianforce/torquevec-tor,F,appliedatamechanismstoolframeandactingthroughaninfinitesimalCartesiandisplacement,v.Workinconfig-urationspacetermsisassociatedwithaconfigurationspaceforce/torquevector,f,appliedatamechanismsjointsandact-ingthroughinfinitesimaljointdisplacements,l.Thestiffnessofthehexapodcanbedeterminedusingmatrixstructuralanalysis,wherethestructureisconsideredtobeacom-binationofelementsandnodes.Thederivationofthehexapodstiffnessmodelisbasedonthefollowingassumptions:1.Theonlydeformationofthelinksisintheaxialdirection.2.Thereisnobendingortwistingofthelinks.3.Thereisnodeformationofthejoints.Workiscalculatedasthedotproductofaforce/torquevectorwithadisplacementvector,FTv=fTl,wherefT=f1,f2,f3,f4,f5,f6aretheforcesexertedoneachofthesix133strutsandFT=Fx,Fy,Fz,Mx,My,Mzaretheforcesandmomentsactingatthecentreofgravityoftheplatform.Notethatv=Jl,soFTJl=fTlFTJ=fT.Transform-ingbothsidesoftheequationyields(FTJ)T=ff=JTF.Onecouldconcludethatactuatingamechanismwithaforce/torquevector,F,appliedatthetoolisequivalenttoac-tuatingthatmechanismwithaforce/torquevector,f,appliedatthejoints,whenthesameamountofvirtualworkisdoneineithercase.TherelationshipbetweenanappliedforceFatthetoolandtheresultingaxialforcesinthestrutfcanbedefinedasF=JTf.Givenpureaxialloading,=li/li=/E=fi/AEfi=(AE/li)li,whereEistheelasticmodulusofthestrutmaterialandAisthecross-sectionalareaofthestrut.Inmatrixformat,f=AE/l1000000AE/l2000000AE/l3000000AE/l4000000AE/l5000000AE/l6.l.(4)Orf=KSl,wherethematrixisidenticaltothestrutspacestiffnessmatrix,Ks.Notethatl=J1v,sof=KSJ1vandF=JTKSJ1v.LetKC=JTKSJ1;thenF=KCv,whereKcistheCartesianspacestiffnessmatrix.Byset-tingupaneigenvalueproblem,theprinciplestiffnessaxes,i,andprinciplestiffness,i,canbefoundasfollows:F=KCv=iv(5)(KCiI6)v=0(6|KCiI6|=0.(7)Here,iisinthedirectionofvwheretheaboveconditionholds.Theprinciplestiffnessiwillchangeasplatformorien-tationandpositionchange.Thehigherthemachinesstructuralstiffness,thebetterthepartsqualityandaccuracy.4StructuralerrordetectionmodelAsmentionedearlier,thehexapodmachinestructureisnotper-fect,andstructuralimperfectionandassemblyerrorsexist.Thestructuralandassemblyerrorsarenotdistributedevenlyamongthehexapodjointsandstruts.Thisunevennesscausesdiverseaccuracylevelsatdifferentplatformpositionsandorientations.Afteramachineisassembled,itisdifficulttomeasurethema-chinestructuralandassemblyerrorbyusinginstrumentsorsen-sorsdirectly.However,themachineplatformsorientationandpositioncanbepreciselymeasuredbyusinganexternalinstru-mentsuchasa5Dlaserinterferometersystemoralasertrackersystem.Amodelisthenneededtoreverseidentifythemachinestructuralerrorsbasedonthemeasuredplatformpositionandorientationerrors.Thehexapodnominalinversekinematicsisderivedas15Tmlm=Tp+TRPPbnTsm;(m=1,2,.,6;n=int(m+1)/2).(8)Differentiatingtheequation,sinceallthevectorsarewithre-specttothetablecoordinatesystem,thesuperscriptofTcanbeomitted:mlm+mlm=p+RPPbn+RPPbnm.(9)Tosimplifythecalculation,therotationerrormatrixcanbewrit-tenasRP=RP,where=,Tistheorientationerrorvector,RPisthenominalorientationmatrix,andisde-finedas=111.Equation9cannowbeexpressedasmlm+mlm=p+RPPbn+RPPbnsm.(10)Sincelmisaunitvector,lmTlm=1;lmTlm=0.MultiplyingEq.10bylmTresultsinm=lTmp+lTmRPPbn+lTmRPPbnlTmsm;(m=1,2,.,6;n=int(m+1)/2),(11)wheremisthestrutlengtherror,smisthetopplatformspher-icaljointpositionalerror,bnisthemobileplatformballjointpositionalerror,pandarethemobileplatformpositionandorientationerrors,respectively,lTmisthestrutvector,andRPisthetransformationmatrixbetweenthemobileplatformand
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西省忻州市部分學(xué)校2025屆九年級下學(xué)期中考二模數(shù)學(xué)試卷(含解析)
- 疼痛醫(yī)療服務(wù)行業(yè)行業(yè)痛點(diǎn)與創(chuàng)新解決方案案例分析報告
- 2025年工業(yè)污染場地修復(fù)技術(shù)選擇與成本效益評估與政策實(shí)施效果報告
- 醫(yī)藥流通行業(yè)供應(yīng)鏈成本控制與可持續(xù)發(fā)展研究
- 2025年新能源汽車廢舊電池回收利用產(chǎn)業(yè)技術(shù)創(chuàng)新趨勢預(yù)測與市場前景分析報告
- 綠色轉(zhuǎn)型對資源型城市生態(tài)環(huán)境保護(hù)的推動與影響報告
- 零售私域流量運(yùn)營實(shí)戰(zhàn)技巧與用戶忠誠度管理報告
- 食品飲料包裝行業(yè)可持續(xù)發(fā)展目標(biāo)與路徑規(guī)劃報告
- 2025年環(huán)境影響評價公眾參與機(jī)制與環(huán)境保護(hù)公眾參與效果評估指標(biāo)體系創(chuàng)新報告
- 2025年四川省德陽市中考理綜物理試題【含答案、解析】
- 同聲傳譯智慧樹知到期末考試答案章節(jié)答案2024年大連外國語大學(xué)
- 信息技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年煙臺職業(yè)學(xué)院
- 肯德基市場細(xì)分分析
- 語文核心素養(yǎng)的培育智慧樹知到期末考試答案2024年
- 中國食物成分表2018年(標(biāo)準(zhǔn)版)第6版
- MOOC 區(qū)塊鏈技術(shù)與應(yīng)用-西南交通大學(xué) 中國大學(xué)慕課答案
- 九三學(xué)社申請入社人員簡歷表
- 7.2 理解父母學(xué)會感恩(高效教案)-【中職專用】中職思想政治《心理健康與職業(yè)生涯》(高教版2023·基礎(chǔ)模塊)
- 高級護(hù)理實(shí)踐智慧樹知到期末考試答案2024年
- 護(hù)理質(zhì)量安全與風(fēng)險管理的信息安全與數(shù)據(jù)保護(hù)
- 【課件】宣紙的工藝講解
評論
0/150
提交評論