




已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ULTRALIGHT-HYBRIDVEHICLEDESIGN:OVERCOMINGTHEBARRIERSTOUSINGADVANCEDCOMPOSITESINTHEAUTOMOTIVEINDUSTRY1.INTRODUCTIONAdvancedpolymericcompositeshaveseveraladvantagesincludingpartsconsolidation,highspecificstrengthandenergyabsorption,stylingflexibility,goodnoise/vibration/harshness(NVH)characteristics,andexcellentcorrosionresistancethatsuitthemtoautomobiles.Furthermore,technologicaladvancesinprocessingandmaterialsappeartomakeadvancedcompositessuitableforhigh-volumeapplications:low-pressurefabricationprocessessuchasresintransfermolding(RTM)couldrequireverylowinvestmentcostsand,dependingonthechoiceofresinandtoolingmaterial,offerfastcycletimes,whilenewversionsofresinsandfiberspromiselowcostandhighperformance.Inaddition,recentdevelopmentsinautomotivedesigndrivetheneedforwhatispotentiallyadvancedcompositesbiggestadvantage:massreduction.Ultralight-hybridvehicledesigns,suchasRockyMountainInstitutes“hypercar”concept,necessitatestringentmass-optimizationparticularlyforthebody-in-white1,theautomotivetermfortheunfinishedbodyanditsframeorchassis.Advancedcompositebodies-in-whitehavethepotentialtobeupto67%lighterthanaconventionalsteelunibodyforequivalentsizeandsafety.However,aquicklookattheuseofadvancedcompositesintheautomotiveindustryraisesanobviousquestion:Ifadvancedcompositesaresuchwonderfulmaterials,whyaretheynotbeingused?Asidefromafewspecialtycomponentsfornichevehicles,suchasonepartintheDodgeViper,andevenfewerwhole-systemapplicationssuchGMs1991Ultraliteconceptcar,theautoindustryhasshunnedtheuseofadvancedcomposites.Evenregularstructuralcomposites,usinglow-performancereinforcementsinquasi-isotropicarrangements,arebeingappliedinlower-than-expectedquantities.Inresponse,organizationstargetingtheautomotiveindustry,suchastheAutomotiveCompositesConsortium(ACC),andcompositeproducers,includingsomeinNISTsAdvancedTechnologyProgram(ATP),areambitiouslyimplementingstrategiestospeedtheintegrationofstructuralandadvancedcompositesintotheautomobile.ButtheACCsfocusoncomponentapplicationssuchasacompositepickuptruckbox,liketheATPsfundingofmanufacturingprocessimprovementswithoutaccompanyingdesignchanges,indicateastrategyofevolutionaryintegration.Whileanevolutionaryapproachminimizesriskintheshortterm,itmaynotbetheoptimallong-termstrategytoovercomethebarrierstoputtingadvancedcompositesintocars.Justasthecombinationofanultralightbodywithahybriddrivelineprovidesa“l(fā)eapfrog”approachtoincreasingfuelefficiencyanddecreasingemissions,sothewhole-systemapplicationofcompositestoanultralightmonocoqueBIWisthebestwayfortheadvancedmaterialsandautomotiveindustriesto“tunnelthrough”thebarrierstolarge-scaleimplementation.Toanautomaker,aleapfrogapproachtocompositeintegrationcouldprovidebenefitsfarout-weighingtherisksanduncertaintiesofworkingwithunfamiliarmaterialsandtechnologies.Toanadvancedmaterialssupplier,aleapfrogapproachcanpreventthe“setuptofail”scenarioexperiencedinmanyautomotivecomponentapplicationsbyoptimallyexploitingthenewmaterialsintrinsicadvantages.Inaddition,aleapfrogapproachcouldpotentiallyexpandtheadvancedmaterialsmarketbyseveralfoldormore,achievingvolumeswhichcouldlowertheirproductscosts.ThusanadvancedmaterialspushintotheBIWshouldnotbesimplyanissueofmaterialsubstitutiononepartatatime:itneedstosubstitutematerialsusingawhole-platformdesignthatmaximizesthematerialsbenefitswhileminimizingandpotentially1eliminatingmanyoftheircosts.2.TECHNOLOGIESFORVOLUMEPRODUCTIONHowcouldpolymericcompositeBIWsbecompetitivelymadeinhighvolume?Thereisnodefinitiveanswer;theslateofpotentialtechnologiesforfabricatingandassemblinganadvanced-materials-basedBIWislargeandgrowingrapidly.Thediversityoftechnologicaloptionsaddsbothuncertaintyandrobustness.Also,whileadvancedpolymericcompositesrequiresophisticateddesigntotakeadvantageofuniquepropertiessuchasanisotropy,theirhigh-volumemanufacturingandassemblytechniquesareconceptuallysimple.Themostpromisingoff-the-shelfornear-termtechnologiesforBIWmanufacturingarebrieflylistednext;afullersurveyisin.2.1RawMaterialsPolymericcompositesincorporatefibrousreinforcementinaresinmatrix.Issuesimportantforrawmaterialselectionincludecost,compatibilitywithfabricationtechnologies,mechanicalandenvironmentalperformance,andrecyclability.2.2MoldingInthevariousmoldingoperations,theintermediatefiberformandresin,combinedeitherpreviouslyordirectlyinthemold,areshapedandhardenedintotheformofthemoldingcavity.Foranall-compositeBIW,liquidcompositemolding(LCM)eitherresintransfermolding(RTM)orstructuralreaction-injectionmolding(SRIM)isgenerallyconsideredtobethemostpromisingprocess.BothRTMandSRIMutilizethermosetresinsbecauseoftheirlowviscosity,althoughcyclicthermoplasticsmaybeadaptable.LCMrequiresapreform,whichcancompriseavarietyofintermediatefiberforms.Asmentionedabove,anadvanced-compositeBIWwouldprobablyuseamorecomplexpreformwithhigher-performancefibers.Compressionmolding,normallydonewithSheetMoldingCompound(SMC),isahigh-pressureprocesswithalowercycletimeandgenerallyabettersurfacefinishthanLCM,suitingittoBIWapplicationswithinthecurrentsteelinfrastructure.However,likeglass,afullycompression-moldedBIW,duetoitsweight,maynotbeabletoreapadequatesynergieswithahybriddrive,norhaveadequatecrashworthiness.BIWdesigns,lessmaturebuthigher-performancemanufacturingtechnologiessuchasRTMorSRIMappeartobemoreapplicabletoanall-compositeBIW.2.3TechnologicalBarriersUnliketheoveralldesignstrategyforcompositeBIWs,noneofthecompositetechnologieslistedaboverequirefundamentaladvancestopermitvolumeBIWmanufacturing.Eachneedsvaryingdegreesofrefinementbutseemstofacenointractabletechnologicalbarriers:implementationrequirestechnologyoptimizationandintegrationratherthaninvention.Someofthekeytechno-economicbarriersaredescribednext.2.3.1Carbon-FiberCostThecostofcarbonfiberisoftencitedasthemostformidablebarriertocommercialapplicationsforcarbon-fibercomposites.ForPAN-basedcarbonfiber,thecombinationofexpensiveprecursorandlow-volume,specializedequipmenthasledtoitshighcost.However,twoenterprisingdomesticmanufacturers,ZoltekandAkzoNobel,offerlow-cost,hightowcommodity-gradecarbonfiber.Bulkcreelpricesfortheircontinuousfiberarecurrentlyaslowas$17.60/kg.Centraltofurtherdecreasesinpricearecheaperversionsoftheprecursor,whichhas“nocostcontrollingdifferences”fromthecommodity-gradeacrylicfiberthatcosts$3.00/kg.toproduce.Inaddition,highervolumesofproductionareneededtolowerunitcapitalandlaborcosts.High-volumemanufacturingcouldsoonberealized:ZoltekandAkzoplannear-termexpansion.Theirstrategycouldovercomethecostbarrierforadvanced2compositeswithasupply-pushoflow-costfiberintothetransportationmarket.2.3.2PreformingThedifficultyofproducingcomplexpreformsatreasonablecostiscitedalmostasoftenascarbon-fibercostasthechieftechnicalbarriertohigh-volumeadvancedcompositesmanufacturing.PrincetonsConferenceonBasicResearchNeedsforVehiclesoftheFuturerecentlygavepreformingthehighestpriorityamongneededresearchandinnovation.Currently,automakersfavorquasi-isotropicchoppedorcontinuousmatpreformsofglassfiber,which,aswasmentionedabove,aretooweak,isotropic,andhenceheavyforamass-optimizedBIW.Theanisotropicstrategiescommoninaerospaceapplications,suchasprepregtapesandhandlay-upwithautoclaving,aretooslowandcostlyforcars.Fortunately,theproblemofcreatinglow-costcomplexpreformsmaynotbeintractable:severalinnovativetechnologiescouldpermittherapidandinexpensivefabricationofcomplex,net-shapepreforms.FabricssuchasCOTECHarenon-crimp,stitch-bondedlayersofunidirectionalcontinuousfiberthat,accordingtotheirmanufacturer,canbecheaperthanrandommatyetperformaboutaswellasunidirectionaltape.Astitch-bondingprocesscaninexpensivelycreatecomplexpreformsbycombiningaquasi-isotropicbaseoffabricwithstrategicallyplacedinsertsofunidirectionalfabricorrovingatmaximumloadpoints.Alternatively,theCompFormprocessclaimsevencheaperandfastercomplexpreformingpotential,substitutingUV-curablebindersforfabricstitchesalthoughthisprocesscannotbeusedwithacarbon-intensivepreform.Forcreatingnet-shapepreforms,fastultrasoniccutting,usingnestingpatternstominimizewaste,couldbeagoodcomplementtostitch-bonding.Obviously,complexpreformsrequireheavyfront-endengineeringtoavoidresinflowproblemssuchasracetrackingandunexpectedfibermovements.Nevertheless,theseprocesseshavereal-worldvalidity:bothUVstitchingandultrasoniccuttingwereusedtocreateacomplexpreformforaBuickRivierabumperbeam.2.3.4SurfaceQualityBecausecompositemonocoquesrequirestructuralcompositeswithClassAsurfaces,asignificantbarrierisproducingcomponentswithbothhighfiber-volumefractionsandsmooth,porosity-freeexteriors.IfsofttoolingisusedtocapturestrategicadvantagesortoensurecompatibilitywithE-beamcuringforcycle-timereductions,thechallengeofobtainingClassAsurfacesbecomesmorecomplexandimportant.WhileClassAsurfacescouldbedifficultforstructuralcomposites,theyarebynomeansimpossible.Thestitch-bondedfabricdescribedaboveforcomplexpreformswetsouteasilyandhasasurprisinglysmoothsurface,asitismadeupofunidirectionallayers,sosubjecttoresinconsistencyandtoolingsurfacequality,itcouldsimplybesurface-finishedwithaClassAmoldandpainted,savingtheinvestmentandoperationcostsofconventionalsteelfinishingprerequisitetopaintingexteriorBIWparts.Anevensimplerapproachcouldalsoavoidpaintingbyapplyingoneofseveralproprietarylay-in-the-moldClassAcolorcoatpolymerproducts,orperhapsinjectathermoplasticcolorcoatintoaClassAmoldandthenlayinthestructuralelementsbehinditusingacompatibleresinsystem.3.OVERCOMINGTHEBARRIERSTheresultsofthesesurveysledonesetofinterviewerstoconcludethatsince“theadoptionofstructuralcompositesfacesmultiplebarriers,noonesimplequickfixwillrapidlyacceleratetheirdeployment.”Yetdespitecompleximplementationdetails,thereisarelativelysimpleifun-expectedconceptualframeworktointegrateadvancedcompositesintoautomaking.Themosteffectivewaytoovercomethebarriersappearstobereplacingtodaysdominantstrategyofincremental,part-by-partmaterialssubstitutionwithawhole-system-designed,all-advanced-compositeBIW.This“l(fā)eapfrog”approachintegratesaclean-sheetdesign,high-performancerawmaterials,3existingmanufacturingmethods,andaradicallysimplerandsmallerassemblyprocess.Itholdspromiseofbypassingmanybarriersandofchangingautomakersattitudetowardadvancedcompositesfroma“necessaryevil”orindefinitelypostponableinconvenienceintoapromptandlucrativeopportunity.Waystocircumventmajorbarriersaresurveyednext.3.1CostComponent-by-componentsubstitutionofcompositesforsteelcannotoccuruntilmarket-determinedmaterialpricesjustifysubstitutiononasingle-partbasis,eitherthroughcheapermanufacturingorthroughsavedgasoline,withlittleifanycreditformassdecompoundingandevenforthesavedsteelitself.Thesubstitutedmaterialsremaincostly,however,becauseonlysmallvolumesarebeingbought.Creditshouldbe,butisnotalways,takenforthemodestreductionsinpartscount;asaresult,thinkingincomponentterms-makesithardorimpossibletoquantifysavedassemblycosts.Finally,integrationofacompositecomponentwithinasteelBIWcanraiseoverallassemblycosts,especiallyifthecompositepartscycletimesarelongerortheirdimensionsandotherpropertiesaremorevariable.Asaresult,integrationrequirementsofteneconomicallyfavorcompressionmoldingoverRTM,leadingtopartswithsuboptimalperformancefordemandingstructuralapplications.Incontrast,clean-sheetwhole-platformredesigncanyieldradicalreductionsinpartscount,size,andcomplexity:thetypicalBIWwouldhaveonlyafewparts,andassemblyeffortwoulddropbyanorderofmagnitude.Buyingthespecialmaterialsinbulkshouldyielddiscountsand,throughincreasingproductionvolumes,cutmarketprices.Productionvolumescouldbeoptimizedforconvenienceandmarketdemand,ratherthanartificiallyinflatedtomeetamortizationrequirementsforsteeltoolsandpresses.Productionflexibilitycouldberetainednotonlyinvolumebutalsoinstyling.Finally,savingscouldaccumulate“downstream”fromBIWmanufacturingthroughamuchsmallerandsimplerdrivelineandothercomponents,shorterproductcycletimes,andgreaterproductionflexibility.3.2SafetyAdvancedcompositeshavefundamentallydifferentenergyabsorptioncharacteristicsandfailuremodesthansteel.Theyfituncomfortablyintothetraditionalsafety-designparadigm,especiallywhenappliedbysteel-orienteddesignerswhotreatadvancedcompositesas“blackstee
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安全評(píng)價(jià)師(高級(jí))職業(yè)技能鑒定案例分析解析冊(cè)
- 2025年消防執(zhí)業(yè)資格考試題庫:消防應(yīng)急救援戰(zhàn)例分析實(shí)戰(zhàn)演練試卷
- 2025年美術(shù)教師編制考試模擬試卷:美術(shù)教育心理學(xué)研究與應(yīng)用試題
- 2025年CPE考試試卷:寫作思路引導(dǎo)與2025年考試熱點(diǎn)話題分析
- 語文課上難忘的一件事周記(13篇)
- 2025年輕油蒸汽轉(zhuǎn)化催化劑項(xiàng)目提案報(bào)告
- 2025年草除靈乙酯項(xiàng)目申請(qǐng)報(bào)告
- 2025年一建考試機(jī)電工程經(jīng)濟(jì)與造價(jià)管理實(shí)戰(zhàn)案例分析試題卷
- 2025年物業(yè)管理師考試物業(yè)管理物業(yè)設(shè)施運(yùn)行管理實(shí)施改進(jìn)報(bào)告反思試卷
- 在閱讀中發(fā)現(xiàn)美好閱讀感悟作文8篇
- 糖尿病飲食治療講課件
- 輸液反應(yīng)急救護(hù)理流程講課件
- 鋼結(jié)構(gòu)倉庫施工組織設(shè)計(jì)
- 變電站電氣設(shè)備管理制度
- 50篇短文搞定高考英語3500單詞
- 物業(yè)消防檢查培訓(xùn)課件
- 2025年四川省內(nèi)江市中考數(shù)學(xué)試題【含答案解析】
- 外研社版小學(xué)英語(三起)四年級(jí)下冊(cè)單詞默寫表
- 2025年瀘州市中考數(shù)學(xué)試卷真題(含答案解析)
- 山東省菏澤市2023?2024學(xué)年高一下學(xué)期7月期末考試 數(shù)學(xué)試題(含解析)
- 河南省豫地科技集團(tuán)有限公司招聘筆試真題2024
評(píng)論
0/150
提交評(píng)論