版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、空間中直線與直線之間的位置關系學習目標1.會判斷空間兩直線的位置關系.2.理解兩異面直線的定義,會求兩異面直線所成的角.3.能用公理4解決一些簡單的相關問題.知識點一空間中兩條直線的位置關系1.異面直線(1)定義:不同在任何一個平面內的兩條直線叫做異面直線.要點分析:異面直線的定義表明:異面直線不具備確定平面的條件.異面直線既不相交,也不平行.不能誤認為分別在不同平面內的兩條直線為異面直線.如圖中,雖然有a,b,即a,b分別在兩個不同的平面內,但是因為abO,所以a與b不是異面直線.(2)畫法:畫異面直線時,為了充分顯示出它們既不平行也不相交,即不共面的特點,常常需要畫一個或兩個輔助平面作為襯
2、托,以加強直觀性、立體感.如圖所示,a與b為異面直線.(3)判斷方法方法內容定義法依據(jù)定義判斷兩直線不可能在同一平面內定理法過平面外一點與平面內一點的直線和平面內不經過該點的直線為異面直線(此結論可作為定理使用)反證法假設這兩條直線不是異面直線,那么它們是共面直線(即假設兩條直線相交或平行),結合原題中的條件,經正確地推理,得出矛盾,從而判定假設“兩條直線不是異面直線”是錯誤的,進而得出結論:這兩條直線是異面直線2.空間中兩條直線位置關系的分類(1)按兩條直線是否共面分類(2)按兩條直線是否有公共點分類思考(1)分別在兩個平面內的兩條直線一定是異面直線嗎?(2)兩條垂直的直線必相交嗎?答(1)
3、不一定.可能相交、平行或異面.(2)不一定.可能相交垂直,也可能異面垂直.知識點二公理4(平行公理)文字語言平行于同一條直線的兩條直線互相平行,這一性質叫做空間平行線的傳遞性符號語言ab圖形語言知識點三空間等角定理1.定理文字語言空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補.符號語言OAOA,OBOBAOBAOB或AOBAOB180圖形語言作用判斷或證明兩個角相等或互補2.推廣如果兩條相交直線與另兩條相交直線分別平行,那么這兩組直線所成的銳角(或直角)相等.思考如果兩條直線和第三條直線成等角,那么這兩條直線平行嗎?答不一定.這兩條直線可能相交、平行或異面知識點四異面直線所成的角1
4、.概念:已知兩條異面直線a,b,經過空間任一點O作直線aa,bb,我們把a與b所成的銳角(或直角)叫做異面直線a與b所成的角(或夾角).2.異面直線所成的角的取值范圍:090.3.如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.兩條互相垂直的異面直線a,b,記作ab.4.異面直線所成的角的兩種求法(1)在空間任取一點O,過點O分別作aa,bb,則a與b所成的銳角(或直角)為異面直線a與b所成的角,然后通過解三角形等方法求角.(2)在其中一條直線上任取一點(如在b上任取一點)O,過點O作另一條直線的平行線(如過點O作aa),則兩條直線相交所成的銳角(或直角)為異面直線所成的角(如b與
5、a所成的角),然后通過解三角形等方法求角(如圖).題型一空間兩條直線的位置關系的判定例1若a和b是異面直線,b和c是異面直線,則a和c的位置關系是()A.平行 B.異面 C.相交 D.平行、相交或異面答案D解析可借助長方體來判斷.如圖,在長方體ABCDABCD中,AD所在直線為a,AB所在直線為b,已知a和b是異面直線,b和c是異面直線,則c可以是長方體ABCDABCD中的BC,CC,DD.故a和c可以平行、相交或異面.跟蹤訓練1如圖所示,在正方體ABCDA1B1C1D1中,判斷下列直線的位置關系:(1)直線A1B與直線D1C的位置關系是_;(2)直線A1B與直線B1C的位置關系是_;(3)直
6、線D1D與直線D1C的位置關系是_;(4)直線AB與直線B1C的位置關系是_.答案(1)平行(2)異面(2)相交(4)異面解析序號結論理由(1)平行因為A1D1綊BC,所以四邊形A1BCD1為平行四邊形,所以A1BD1C(2)異面A1B與B1C不同在任何一個平面內(3)相交D1DD1CD1(4)異面AB與B1C不同在任何一個平面內題型二公理4、等角定理的應用例2E,F(xiàn)分別是長方體ABCDA1B1C1D1的棱A1A,C1C的中點,求證:四邊形B1EDF是平行四邊形.證明設Q是DD1的中點,連接EQ,QC1.因為E是AA1的中點,所以.又因為在矩形A1B1C1D1中,所以.所以四邊形EQC1B1為
7、平行四邊形.所以.又因為Q,F(xiàn)分別是矩形DD1C1C兩邊D1D,C1C的中點,所以.所以四邊形DQC1F為平行四邊形.所以.又因為,所以.所以四邊形B1EDF為平行四邊形.跟蹤訓練2如圖,已知E,F(xiàn),G,H分別是空間四邊形ABCD的邊AB,BC,CD,DA的中點.(1)求證:E,F(xiàn),G,H四點共面;(2)若四邊形EFGH是矩形,求證:ACBD.證明(1)在ABD中,E,H分別是AB,AD的中點,EHBD.同理FGBD,則EHFG.故E,F(xiàn),G,H四點共面.(2)由(1)知EHBD,同理ACGH.又四邊形EFGH是矩形,EHGH.故ACBD.題型三異面直線所成的角例3如圖所示,在空間四邊形ABC
8、D中,ABCD,ABCD,E,F(xiàn)分別為BC,AD的中點,求EF和AB所成的角.解如圖,取BD的中點G,連接EG,F(xiàn)G.因為E,F(xiàn)分別為BC,AD的中點,ABCD,所以EGCD,GFAB,且EGCD,GFAB.所以GFE就是EF與AB所成的角或其補角,EGGF.因為ABCD,所以EGGF.所以EGF90.所以EFG為等腰直角三角形.所以GFE45,即EF與AB所成的角為45.跟蹤訓練3空間四邊形ABCD中,ABCD且AB與CD所成的角為30,E,F(xiàn)分別為BC,AD的中點,求EF與AB所成角的大小.解取AC的中點G,連接EG,F(xiàn)G,則EGAB,GFCD.故直線GE,EF所成的銳角即為AB與EF所成
9、的角,直線GE,GF所成的銳角即為AB與CD所成的角.AB與CD所成的角為30,EGF30或150.由ABCD,知EGFG,EFG為等腰三角形.當EGF30時,GEF75;當EGF150時,GEF15.故EF與AB所成的角為15或75.轉化與化歸思想例5在空間四邊形ABCD中,ADBC2a,E,F(xiàn)分別是AB,CD的中點,EFa,求異面直線AD,BC所成的角.分析要求異面直線AD,BC所成的角,可在空間中找一些特殊點,將AD,BC平移至一個三角形中.此題已知E,F(xiàn)分別為AB,CD的中點,故可尋找一邊中點,如BD的中點M,則EMF(或其補角)為所求角.解如圖,取BD的中點M.由題意,知EM為BAD
10、的中位線,所以EMAD且EMAD.同理,MFBC且MFBC.所以EMa,MFa,且EMF(或其補角)為所求角.在等腰MEF中,取EF的中點N,連接MN,則MNEF.又因為EFa,所以ENa.故有sinEMN.所以EMN60,所以EMF2EMN120.因為EMF12090,所以AD,BC所成的角為EMF的補角,即AD和BC所成的角為60.反證法的合理應用例6如圖,三棱錐PABC中,E是PC上異于點P的點.求證:AE與PB是異面直線.分析利用定義直接證明,即從不同在任何一個平面內中的“任何”開始入手,一個平面一個平面地尋找是不可能實現(xiàn)的,因此必須找到一個間接證法來證明,反證法即是一種行之有效的方法
11、.證明假設AE與PB不是異面直線,設AE與PB都在平面內,因為P,E,所以PE.又因為CPE,所以C.所以點P,A,B,C都在平面內.這與P,A,B,C不共面(PABC是三棱錐)矛盾.于是假設不成立,所以AE與PB是異面直線.1.若空間兩條直線a和b沒有公共點,則a與b的位置關系是()A.共面 B.平行 C.異面 D.平行或異面2.一條直線與兩條異面直線中的一條平行,則它和另一條的位置關系是()A.平行或異面 B.相交或異面 C.異面 D.相交3.設P是直線l外一定點,過點P且與l成30角的異面直線()A.有無數(shù)條 B.有兩條 C.至多有兩條 D.有一條4.如圖所示,G,H,M,N分別是正三棱
12、柱的頂點或所在棱的中點,則表示直線GH,MN是異面直線的圖形有_.(填序號)5.在正方體ABCDA1B1C1D1中,E為C1D1的中點,則異面直線AE與A1B1所成角的余弦值為_.一、選擇題1.分別和兩條異面直線平行的兩條直線的位置關系是()A.一定平行 B.一定相交C.一定異面 D.相交或異面2.已知空間兩個角,與的兩邊對應平行,且60,則等于()A.60 B.120 C.30 D.60或1203.在正方體ABCDA1B1C1D1中,異面直線BA1與CC1所成的角為()A.30 B.45 C.60 D.904.下面四種說法:若直線a、b異面,b、c異面,則a、c異面;若直線a、b相交,b、c
13、相交,則a、c相交;若ab,則a、b與c所成的角相等;若ab,bc,則ac.其中正確的個數(shù)是()A.4 B.3 C.2 D.15.空間四邊形的對角線互相垂直且相等,順次連接這個四邊形各邊中點,所組成的四邊形是()A.梯形 B.矩形 C.平行四邊形 D.正方形6.若空間四邊形ABCD的兩條對角線AC,BD的長分別是8,12,則過AB的中點E且平行于BD,AC的截面四邊形的周長為()A.10 B.20 C.8 D.47.如圖,三棱柱ABCA1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中點,則下列敘述正確的是()A.CC1與B1E是異面直線B.C1C與AE共面C.AE與B1C1是異面直
14、線D.AE與B1C1所成的角為60二、填空題8.在四棱錐PABCD中,各棱所在的直線互相異面的有_對.9.一個正方體紙盒展開后如圖所示,在原正方體紙盒中有如下結論:ABEF;AB與CM所成的角為60;EF與MN是異面直線;MNCD.以上結論中正確的序號為_.10.如圖所示,在正方體ABCDA1B1C1D1中,異面直線A1B與AD1所成的角為_.三、解答題11.如圖所示,等腰直角三角形ABC中,BAC90,BC,DAAC,DAAB,若DA1,且E為DA的中點,求異面直線BE與CD所成角的余弦值.12.如圖,E,F(xiàn),G,H分別是空間四邊形ABCD各邊上的點,且有AEEBAHHDm,CFFBCGGD
15、n.(1)證明:E,F(xiàn),G,H四點共面;(2)m,n滿足什么條件時,四邊形EFGH是平行四邊形?(3)在(2)的條件下,若ACBD,試證明:EGFH.當堂檢測答案1.答案D解析若直線a和b共面,則由題意可知ab;若a和b不共面,則由題意可知a與b是異面直線.2.答案B解析如圖,在正方體ABCD-A1B1C1D1中,AA1與BC是異面直線,又AA1BB1,AA1DD1,顯然BB1BCB,DD1與BC是異面直線,故選B.3.答案A解析我們現(xiàn)在研究的平臺是錐空間.如圖所示,過點P作直線ll,以l為軸,與l成30角的圓錐面的所有母線都與l成30角.4.答案解析中,G,M是中點,AG綊BM,GM綊AB綊
16、HN,GHMN,即G,H,M,N四點共面;中,H,G,N三點共面,且都在平面HGN內,而點M顯然不在平面HGN內,H,G,M,N四點不共面,即GH與MN異面;中,G,M是中點,GM綊CD,GM綊HN,即GMNH是梯形,則HG,MN必相交,H,G,M,N四點共面;中,同,G,H,M,N四點不共面,即GH與MN異面.5.答案解析設棱長為1,因為A1B1C1D1,所以AED1就是異面直線AE與A1B1所成的角.在AED1中,cosAED1.課時精練答案一、選擇題1.答案D解析可能相交也可能異面,但一定不平行(否則與條件矛盾).2.答案D解析由等角定理,知與相等或互補,故60或120.3.答案B解析如
17、圖,在正方體ABCDA1B1C1D1中,BB1CC1,故B1BA1就是異面直線BA1與CC1所成的角,故為45.4.答案D解析若a、b異面,b、c異面,則a、c相交、平行、異面均有可能,故不對.若a、b相交,b、c相交,則a、c相交、平行、異面均有可能,故不對.若ab,bc,則a、c平行、相交、異面均有可能,故不對.正確.5.答案D解析如圖,因為BDAC,且BDAC,又因為E,F(xiàn),G,H分別為對應邊的中點,所以FGEHBD,HGEFAC.所以FGHG,且FGHG.所以四邊形EFGH為正方形.6.答案B解析設截面四邊形為EFGH,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,EFGHAC4,
18、FGHEBD6,周長為2(46)20.7.答案C解析由于CC1與B1E都在平面C1B1BC內,故C1C與B1E是共面的,所以A錯誤;由于C1C在平面C1B1BC內,而AE與平面C1B1BC相交于E點,點E不在C1C上,故C1C與AE是異面直線,B錯誤;同理AE與B1C1是異面直線,C正確;而AE與B1C1所成的角就是AE與BC所成的角,E為BC中點,ABC為正三角形,所以AEBC,D錯誤.綜上所述,故選C.二、填空題8.答案8解析以底邊所在直線為準進行考察,因為四邊形ABCD是平面圖形,4條邊在同一平面內,不可能組成異面直線,而每一邊所在直線能與2條側棱組成2對異面直線,所以共有428(對)異面直線.9.答案解析把正方體的平面展開圖還原成原來的正方體,如圖所示,ABEF,EF與MN是異面直線,ABCM,MNCD,只有正確.10.答案60解析連接BC1,A1C1,BC1AD1,異面直線A1B與AD1所成的角即為直線A1B與BC1所成的角.在A1BC1中,A1BBC1A1C1,A1BC160,故異面直線A1B與AD1所成的角為60.三、解答題11.解取AC的中點F,連接EF,BF,在ACD中,E,F(xiàn)分別是AD,AC的中點,EFCD,BEF即為所求的異面直線BE與CD所成的角(或其補角).在RtABC中,BC,ABAC,ABAC1,在RtEAB中,AB1,AEAD,BE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025青海省安全員-B證考試題庫附答案
- 2025安徽省建筑安全員《A證》考試題庫及答案
- 貴陽人文科技學院《形式化方法導論》2023-2024學年第一學期期末試卷
- 廣州珠江職業(yè)技術學院《機能學實驗(二)》2023-2024學年第一學期期末試卷
- 廣州新華學院《工業(yè)機器人基礎操作與編程實訓》2023-2024學年第一學期期末試卷
- 廣州衛(wèi)生職業(yè)技術學院《分子與細胞生物學檢測技術》2023-2024學年第一學期期末試卷
- 廣州鐵路職業(yè)技術學院《建筑及環(huán)境設計方法學》2023-2024學年第一學期期末試卷
- 2025年江西省安全員《B證》考試題庫
- 2025山西建筑安全員B證考試題庫及答案
- 《電子狗哪個牌子好》課件
- 浙江省金華市(2024年-2025年小學五年級語文)人教版期末考試((上下)學期)試卷及答案
- 陸上風電場設備選型技術導則
- 核心素養(yǎng)導向的單元整體教學
- 中醫(yī)婦科疾病的治療(完美版)課件
- 汽車維修行業(yè)投訴處理管理制度
- 濟南大學《線性代數(shù)與空間解析幾何》2023-2024學年第一學期期末試卷
- 山東省青島市2024-2025學年七年級上學期11月期中英語試題
- 2024年海南省公務員錄用考試《行測》試題及答案解析
- 《預防未成年人犯罪》課件(圖文)
- 教育機構日常運營與管理指南
- 2024年浙江省能源集團應屆生招聘高頻難、易錯點500題模擬試題附帶答案詳解
評論
0/150
提交評論