一元二次方程題型分類總結(jié)_第1頁
一元二次方程題型分類總結(jié)_第2頁
一元二次方程題型分類總結(jié)_第3頁
一元二次方程題型分類總結(jié)_第4頁
一元二次方程題型分類總結(jié)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、一元二次方程題型分類總結(jié)知識梳理一、知識結(jié)構(gòu):一元二次方程考點(diǎn)類型一概念(1)定義:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2,這樣的整式方程就是一元二次方程。 (2)一般表達(dá)式: 難點(diǎn):如何理解 “未知數(shù)的最高次數(shù)是2”:該項(xiàng)系數(shù)不為“0”;未知數(shù)指數(shù)為“2”;若存在某項(xiàng)指數(shù)為待定系數(shù),或系數(shù)也有待定,則需建立方程或不等式加以討論。典型例題:例1、下列方程中是關(guān)于x的一元二次方程的是( )A B C D 變式:當(dāng)k 時,關(guān)于x的方程是一元二次方程。例2、方程是關(guān)于x的一元二次方程,則m的值為 。針對練習(xí):1、方程的一次項(xiàng)系數(shù)是 ,常數(shù)項(xiàng)是 。2、若方程是關(guān)于x的一元一次方程,求m的值;寫出關(guān)

2、于x的一元一次方程。3、若方程是關(guān)于x的一元二次方程,則m的取值范圍是 。4、若方程nxm+xn-2x2=0是一元二次方程,則下列不可能的是( )A.m=n=2 B.m=3,n=1 C.n=2,m=1 D.m=n=1考點(diǎn)類型二方程的解概念:使方程兩邊相等的未知數(shù)的值,就是方程的解。應(yīng)用:利用根的概念求代數(shù)式的值;典型例題:例1、已知的值為2,則的值為 。例2、關(guān)于x的一元二次方程的一個根為0,則a的值為 。例3、已知關(guān)于x的一元二次方程的系數(shù)滿足,則此方程必有一根為 。例4、已知是方程的兩個根,是方程的兩個根,則m的值為 。針對練習(xí):1、已知方程的一根是2,則k為 ,另一根是 。2、已知關(guān)于x

3、的方程的一個解與方程的解相同。求k的值; 方程的另一個解。3、已知m是方程的一個根,則代數(shù)式 。4、已知是的根,則 。5、方程的一個根為( )A B 1 C D 6、若 ??键c(diǎn)類型三解法方法:直接開方法;因式分解法;配方法;公式法關(guān)鍵點(diǎn):降次類型一、直接開方法:對于,等形式均適用直接開方法典型例題:例1、解方程: =0; 例2、若,則x的值為 。針對練習(xí):下列方程無解的是( )A. B. C. D.類型二、因式分解法:方程特點(diǎn):左邊可以分解為兩個一次因式的積,右邊為“0”,方程形式:如, ,典型例題:例1、的根為( )A B C D 例2、若,則4x+y的值為 。變式1: 。變式2:若,則x+

4、y的值為 。變式3:若,則x+y的值為 。例3、方程的解為( )A. B. C. D.例4、解方程: 例5、已知,則的值為 。變式:已知,且,則的值為 。針對練習(xí):1、下列說法中:方程的二根為,則 . 方程可變形為正確的有( )A.1個 B.2個 C.3個 D.4個2、以與為根的一元二次方程是()A BC D3、寫出一個一元二次方程,要求二次項(xiàng)系數(shù)不為1,且兩根互為倒數(shù): 寫出一個一元二次方程,要求二次項(xiàng)系數(shù)不為1,且兩根互為相反數(shù): 4、若實(shí)數(shù)x、y滿足,則x+y的值為( )A、-1或-2 B、-1或2 C、1或-2 D、1或25、方程:的解是 。6、已知,且,求的值。7、方程的較大根為r,

5、方程的較小根為s,則s-r的值為 。類型三、配方法在解方程中,多不用配方法;但常利用配方思想求解代數(shù)式的值或極值之類的問題。典型例題:例1、 試用配方法說明的值恒大于0。例2、 已知x、y為實(shí)數(shù),求代數(shù)式的最小值。例3、 已知為實(shí)數(shù),求的值。例4、 分解因式:針對練習(xí):1、試用配方法說明的值恒小于0。2、已知,則 .3、若,則t的最大值為 ,最小值為 。4、如果,那么的值為 。類型四、公式法條件:公式: ,典型例題:例1、選擇適當(dāng)方法解下列方程: 例2、在實(shí)數(shù)范圍內(nèi)分解因式:(1); (2). 說明:對于二次三項(xiàng)式的因式分解,如果在有理數(shù)范圍內(nèi)不能分解,一般情況要用求根公式,這種方法首先令=0

6、,求出兩根,再寫成=.分解結(jié)果是否把二次項(xiàng)系數(shù)乘進(jìn)括號內(nèi),取決于能否把括號內(nèi)的分母化去.類型五、 “降次思想”的應(yīng)用求代數(shù)式的值; 解二元二次方程組。典型例題:例1、 已知,求代數(shù)式的值。例2、如果,那么代數(shù)式的值。例3、已知是一元二次方程的一根,求的值。例4、用兩種不同的方法解方程組說明:解二元二次方程組的具體思維方法有兩種:先消元,再降次;先降次,再消元。但都體現(xiàn)了一種共同的數(shù)學(xué)思想化歸思想,即把新問題轉(zhuǎn)化歸結(jié)為我們已知的問題.考點(diǎn)類型四根的判別式b2-4ac根的判別式的作用:定根的個數(shù);求待定系數(shù)的值;應(yīng)用于其它。典型例題:例1、若關(guān)于的方程有兩個不相等的實(shí)數(shù)根,則k的取值范圍是 。例2

7、、關(guān)于x的方程有實(shí)數(shù)根,則m的取值范圍是( )A. B. C. D.例3、已知關(guān)于x的方程(1)求證:無論k取何值時,方程總有實(shí)數(shù)根;(2)若等腰ABC的一邊長為1,另兩邊長恰好是方程的兩個根,求ABC的周長。例4、已知二次三項(xiàng)式是一個完全平方式,試求的值.例5、為何值時,方程組有兩個不同的實(shí)數(shù)解?有兩個相同的實(shí)數(shù)解?針對練習(xí):1、當(dāng)k 時,關(guān)于x的二次三項(xiàng)式是完全平方式。2、當(dāng)取何值時,多項(xiàng)式是一個完全平方式?這個完全平方式是什么?3、已知方程有兩個不相等的實(shí)數(shù)根,則m的值是 .4、為何值時,方程組(1)有兩組相等的實(shí)數(shù)解,并求此解;(2)有兩組不相等的實(shí)數(shù)解;(3)沒有實(shí)數(shù)解. 5、當(dāng)取何

8、值時,方程的根與均為有理數(shù)?考點(diǎn)類型五方程類問題中的“分類討論”典型例題:例1、關(guān)于x的方程有兩個實(shí)數(shù)根,則m為 ,只有一個根,則m為 。 例2、 不解方程,判斷關(guān)于x的方程根的情況。例3、如果關(guān)于x的方程及方程均有實(shí)數(shù)根,問這兩方程是否有相同的根?若有,請求出這相同的根及k的值;若沒有,請說明理由??键c(diǎn)類型六應(yīng)用解答題“碰面”問題;“復(fù)利率”問題;“幾何”問題;“最值”型問題;“圖表”類問題典型例題:1、五羊足球隊(duì)的慶祝晚宴,出席者兩兩碰杯一次,共碰杯990次,問晚宴共有多少人出席?2、某小組每人送他人一張照片,全組共送了90張,那么這個小組共多少人?3、北京申奧成功,促進(jìn)了一批產(chǎn)業(yè)的迅速發(fā)

9、展,某通訊公司開發(fā)了一種新型通訊產(chǎn)品投放市場,根據(jù)計劃,第一年投入資金600萬元,第二年比第一年減少,第三年比第二年減少,該產(chǎn)品第一年收入資金約400萬元,公司計劃三年內(nèi)不僅要將投入的總資金全部收回,還要盈利,要實(shí)現(xiàn)這一目標(biāo),該產(chǎn)品收入的年平均增長率約為多少?(結(jié)果精確到0.1,)4、某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若按每千克50元銷售,一個月能售出500千克,銷售單價每漲1元,月銷售量就減少10千克,針對此回答:(1)當(dāng)銷售價定為每千克55元時,計算月銷售量和月銷售利潤。(2)商店想在月銷售成本不超過10000元的情況下,使得月銷售利潤達(dá)到8000元,銷售單價應(yīng)定為

10、多少?5、將一條長20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長作成一個正方形。(1)要使這兩個正方形的面積之和等于17cm2,那么這兩段鐵絲的長度分別為多少?(2)兩個正方形的面積之和可能等于12cm2嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由。(3)兩個正方形的面積之和最小為多少?6、A、B兩地間的路程為36千米.甲從A地,乙從B地同時出發(fā)相向而行,兩人相遇后,甲再走2小時30分到達(dá)B地,乙再走1小時36分到達(dá)A地,求兩人的速度.考點(diǎn)類型七根與系數(shù)的關(guān)系前提:對于而言,當(dāng)滿足、時,才能用韋達(dá)定理。主要內(nèi)容:應(yīng)用:整體代入求值。典型例題:例1、已知一個直角三角形的兩直角邊長恰是方程的兩根,則這個直角三角形的斜邊是( ) A. B.3 C.6 D.例2、已知關(guān)于x的方程有兩個不相等的實(shí)數(shù)根,(1)求k的取值范圍;(2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?若存在,求出k的值;若不存在,請說明理由。例3、小明和小紅一起做作業(yè),在解一道一元二次方程(二次項(xiàng)系數(shù)為1)時,小明因看錯常數(shù)項(xiàng),而得到解為8和2,小紅因看錯了一次項(xiàng)系數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論