版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、www.QYXK.net 中學(xué)數(shù)學(xué)網(wǎng)(群英學(xué)科)數(shù)學(xué)5 第一章 解三角形章節(jié)總體設(shè)計(jì)(一)課標(biāo)要求本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過(guò)本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):(1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問(wèn)題。(二)編寫(xiě)意圖與特色1數(shù)學(xué)思想方法的重要性數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并
2、且在提出問(wèn)題、思考解決問(wèn)題的策略等方面對(duì)學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識(shí),就是“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角”,“如果已知兩個(gè)三角形的兩條對(duì)應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題:“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形
3、是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題?!痹O(shè)置這些問(wèn)題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。2注意加強(qiáng)前后知識(shí)的聯(lián)系加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書(shū)成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對(duì)于數(shù)學(xué)知識(shí)的學(xué)習(xí)和鞏固。本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題“在任意三角形中有大邊對(duì)
4、大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題?!边@樣,從聯(lián)系的觀(guān)點(diǎn),從新的角度看過(guò)去的問(wèn)題,使學(xué)生對(duì)于過(guò)去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu)。課程標(biāo)準(zhǔn)和教科書(shū)把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,位置相對(duì)靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直
5、線(xiàn)和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡(jiǎn)潔。比如對(duì)于余弦定理的證明,常用的方法是借助于三角的方法,需要對(duì)于三角形進(jìn)行討論,方法不夠簡(jiǎn)潔,教科書(shū)則用了向量的方法,發(fā)揮了向量方法在解決問(wèn)題中的威力。在證明了余弦定理及其推論以后,教科書(shū)從余弦定理與勾股定理的比較中,提出了一個(gè)思考問(wèn)題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊
6、的平方,那么第三邊所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角.從上可知,余弦定理是勾股定理的推廣.”3重視加強(qiáng)意識(shí)和數(shù)學(xué)實(shí)踐能力學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問(wèn)題是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,不能把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,對(duì)所學(xué)數(shù)學(xué)知識(shí)的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見(jiàn)數(shù)學(xué)問(wèn)題解法的能力較強(qiáng),但當(dāng)面臨一種新的問(wèn)題時(shí)卻辦法不多,對(duì)于諸如觀(guān)察、分析、歸納、類(lèi)比、抽象、概括、猜想等發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的科學(xué)思維方法了解不夠。針對(duì)這些實(shí)際情況,本章重視從實(shí)際問(wèn)題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)
7、應(yīng)用于實(shí)際問(wèn)題。(三)教學(xué)內(nèi)容及課時(shí)安排建議1.1正弦定理和余弦定理(約3課時(shí))1.2應(yīng)用舉例(約4課時(shí))1.3實(shí)習(xí)作業(yè)(約1課時(shí))(四)評(píng)價(jià)建議1要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問(wèn)題,研究問(wèn)題。在對(duì)于正弦定理和余弦定理的證明的探究過(guò)程中,應(yīng)該因勢(shì)利導(dǎo),根據(jù)具體教學(xué)過(guò)程中學(xué)生思考問(wèn)題的方向來(lái)啟發(fā)學(xué)生得到自己對(duì)于定理的證明。如對(duì)于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對(duì)于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測(cè)量問(wèn)題的過(guò)程中,一個(gè)問(wèn)題也常常有多種不同的解決方案,應(yīng)該鼓勵(lì)學(xué)生提出自己的解決辦法,并對(duì)于不同的方法進(jìn)行必要的分析和比較。
8、對(duì)于一些常見(jiàn)的測(cè)量問(wèn)題甚至可以鼓勵(lì)學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。2適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),提高學(xué)生分析問(wèn)題的解決實(shí)際問(wèn)題的能力、動(dòng)手操作的能力以及用數(shù)學(xué)語(yǔ)言表達(dá)實(shí)習(xí)過(guò)程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和數(shù)學(xué)實(shí)踐能力。教師要注意對(duì)于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對(duì)于實(shí)際測(cè)量問(wèn)題的選擇,及時(shí)糾正實(shí)際操作中的錯(cuò)誤,解決測(cè)量中出現(xiàn)的一些問(wèn)題。課題: 111正弦定理授課類(lèi)型:新授課教學(xué)目標(biāo)知識(shí)與技能:通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會(huì)運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類(lèi)基本問(wèn)題。過(guò)程與方法:讓學(xué)生從已有
9、的幾何知識(shí)出發(fā),共同探究在任意三角形中,邊與其對(duì)角的關(guān)系,引導(dǎo)學(xué)生通過(guò)觀(guān)察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,并進(jìn)行定理基本應(yīng)用的實(shí)踐操作。情感態(tài)度與價(jià)值觀(guān):培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問(wèn)題的運(yùn)算能力;培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思思想能力,通過(guò)三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來(lái)體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。教學(xué)重點(diǎn)正弦定理的探索和證明及其基本應(yīng)用。教學(xué)難點(diǎn)已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。教學(xué)過(guò)程.課題導(dǎo)入如圖11-1,固定ABC的邊CB及B,使邊AC繞著頂點(diǎn)C轉(zhuǎn)動(dòng)。 A思考:C的大小與它的對(duì)邊AB的長(zhǎng)度之間有怎樣的數(shù)量關(guān)系?顯然,邊AB
10、的長(zhǎng)度隨著其對(duì)角C的大小的增大而增大。能否用一個(gè)等式把這種關(guān)系精確地表示出來(lái)? C B.講授新課探索研究 (圖11-1)在初中,我們已學(xué)過(guò)如何解直角三角形,下面就首先來(lái)探討直角三角形中,角與邊的等式關(guān)系。如圖11-2,在RtABC中,設(shè)BC=a,AC=b,AB=c, 根據(jù)銳角三角函數(shù)中正弦函數(shù)的定義,有,又, A則 b c從而在直角三角形ABC中, C a B(圖11-2)思考:那么對(duì)于任意的三角形,以上關(guān)系式是否仍然成立?(由學(xué)生討論、分析)可分為銳角三角形和鈍角三角形兩種情況:如圖11-3,當(dāng)ABC是銳角三角形時(shí),設(shè)邊AB上的高是CD,根據(jù)任意角三角函數(shù)的定義,有CD=,則, C同理可得,
11、 b a從而 A c B (圖11-3)思考:是否可以用其它方法證明這一等式?由于涉及邊長(zhǎng)問(wèn)題,從而可以考慮用向量來(lái)研究這個(gè)問(wèn)題。(證法二):過(guò)點(diǎn)A作, C由向量的加法可得 則 A B ,即同理,過(guò)點(diǎn)C作,可得 從而 類(lèi)似可推出,當(dāng)ABC是鈍角三角形時(shí),以上關(guān)系式仍然成立。(由學(xué)生課后自己推導(dǎo))從上面的研探過(guò)程,可得以下定理正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,即理解定理(1)正弦定理說(shuō)明同一三角形中,邊與其對(duì)角的正弦成正比,且比例系數(shù)為同一正數(shù),即存在正數(shù)k使,;(2)等價(jià)于,從而知正弦定理的基本作用為:已知三角形的任意兩角及其一邊可以求其他邊,如;已知三角形的任意兩邊與其
12、中一邊的對(duì)角可以求其他角的正弦值,如。一般地,已知三角形的某些邊和角,求其他的邊和角的過(guò)程叫作解三角形。例題分析例1在中,已知,cm,解三角形。解:根據(jù)三角形內(nèi)角和定理,;根據(jù)正弦定理,;根據(jù)正弦定理,評(píng)述:對(duì)于解三角形中的復(fù)雜運(yùn)算可使用計(jì)算器。例2在中,已知cm,cm,解三角形(角度精確到,邊長(zhǎng)精確到1cm)。解:根據(jù)正弦定理,因?yàn)?,所以,?當(dāng)時(shí), , 當(dāng)時(shí), ,評(píng)述:應(yīng)注意已知兩邊和其中一邊的對(duì)角解三角形時(shí),可能有兩解的情形。.課堂練習(xí)第5頁(yè)練習(xí)第1(1)、2(1)題。補(bǔ)充練習(xí)已知ABC中,求(答案:1:2:3).課時(shí)小結(jié)(由學(xué)生歸納總結(jié))(1)定理的表示形式:;或,(2)正弦定理的應(yīng)用
13、范圍:已知兩角和任一邊,求其它兩邊及一角;已知兩邊和其中一邊對(duì)角,求另一邊的對(duì)角。.課后作業(yè)第10頁(yè)習(xí)題1.1A組第1(1)、2(1)題。板書(shū)設(shè)計(jì)授后記課題: 1.1.2余弦定理授課類(lèi)型:新授課教學(xué)目標(biāo)知識(shí)與技能:掌握余弦定理的兩種表示形式及證明余弦定理的向量方法,并會(huì)運(yùn)用余弦定理解決兩類(lèi)基本的解三角形問(wèn)題。過(guò)程與方法:利用向量的數(shù)量積推出余弦定理及其推論,并通過(guò)實(shí)踐演算掌握運(yùn)用余弦定理解決兩類(lèi)基本的解三角形問(wèn)題情感態(tài)度與價(jià)值觀(guān):培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問(wèn)題的運(yùn)算能力;通過(guò)三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)間的關(guān)系,來(lái)理解事物之間的普遍聯(lián)系與辯證統(tǒng)一。教學(xué)重點(diǎn)余弦定理的發(fā)現(xiàn)和證
14、明過(guò)程及其基本應(yīng)用;教學(xué)難點(diǎn)勾股定理在余弦定理的發(fā)現(xiàn)和證明過(guò)程中的作用。教學(xué)過(guò)程.課題導(dǎo)入 C如圖11-4,在A(yíng)BC中,設(shè)BC=a,AC=b,AB=c,已知a,b和C,求邊c b aA c B(圖11-4).講授新課探索研究聯(lián)系已經(jīng)學(xué)過(guò)的知識(shí)和方法,可用什么途徑來(lái)解決這個(gè)問(wèn)題?用正弦定理試求,發(fā)現(xiàn)因A、B均未知,所以較難求邊c。由于涉及邊長(zhǎng)問(wèn)題,從而可以考慮用向量來(lái)研究這個(gè)問(wèn)題。 A如圖11-5,設(shè),那么,則 C B 從而 (圖11-5)同理可證 于是得到以下定理余弦定理:三角形中任何一邊的平方等于其他兩邊的平方的和減去這兩邊與它們的夾角的余弦的積的兩倍。即 思考:這個(gè)式子中有幾個(gè)量?從方程的
15、角度看已知其中三個(gè)量,可以求出第四個(gè)量,能否由三邊求出一角?(由學(xué)生推出)從余弦定理,又可得到以下推論:理解定理從而知余弦定理及其推論的基本作用為:已知三角形的任意兩邊及它們的夾角就可以求出第三邊;已知三角形的三條邊就可以求出其它角。思考:勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的關(guān)系?(由學(xué)生總結(jié))若ABC中,C=,則,這時(shí)由此可知余弦定理是勾股定理的推廣,勾股定理是余弦定理的特例。例題分析例1在A(yíng)BC中,已知,求b及A解:=cos=求可以利用余弦定理,也可以利用正弦定理:解法一:cos解法二:sin又,即評(píng)述:解法二
16、應(yīng)注意確定A的取值范圍。例2在A(yíng)BC中,已知,解三角形(見(jiàn)課本第8頁(yè)例4,可由學(xué)生通過(guò)閱讀進(jìn)行理解)解:由余弦定理的推論得:cos;cos;.課堂練習(xí)第8頁(yè)練習(xí)第1(1)、2(1)題。補(bǔ)充練習(xí)在A(yíng)BC中,若,求角A(答案:A=120).課時(shí)小結(jié)(1)余弦定理是任何三角形邊角之間存在的共同規(guī)律,勾股定理是余弦定理的特例;(2)余弦定理的應(yīng)用范圍:已知三邊求三角;已知兩邊及它們的夾角,求第三邊。.課后作業(yè)課后閱讀:課本第9頁(yè)探究與發(fā)現(xiàn)課時(shí)作業(yè):第11頁(yè)習(xí)題1.1A組第3(1),4(1)題。板書(shū)設(shè)計(jì)授后記課題: 113解三角形的進(jìn)一步討論授課類(lèi)型:新授課教學(xué)目標(biāo)知識(shí)與技能:掌握在已知三角形的兩邊及其
17、中一邊的對(duì)角解三角形時(shí),有兩解或一解或無(wú)解等情形;三角形各種類(lèi)型的判定方法;三角形面積定理的應(yīng)用。過(guò)程與方法:通過(guò)引導(dǎo)學(xué)生分析,解答三個(gè)典型例子,使學(xué)生學(xué)會(huì)綜合運(yùn)用正、余弦定理,三角函數(shù)公式及三角形有關(guān)性質(zhì)求解三角形問(wèn)題。情感態(tài)度與價(jià)值觀(guān):通過(guò)正、余弦定理,在解三角形問(wèn)題時(shí)溝通了三角形的有關(guān)性質(zhì)和三角函數(shù)的關(guān)系,反映了事物之間的必然聯(lián)系及一定條件下相互轉(zhuǎn)化的可能,從而從本質(zhì)上反映了事物之間的內(nèi)在聯(lián)系。教學(xué)重點(diǎn)在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),有兩解或一解或無(wú)解等情形;三角形各種類(lèi)型的判定方法;三角形面積定理的應(yīng)用。教學(xué)難點(diǎn)正、余弦定理與三角形的有關(guān)性質(zhì)的綜合運(yùn)用。教學(xué)過(guò)程.課題導(dǎo)入
18、創(chuàng)設(shè)情景思考:在A(yíng)BC中,已知,解三角形。(由學(xué)生閱讀課本第9頁(yè)解答過(guò)程)從此題的分析我們發(fā)現(xiàn),在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),在某些條件下會(huì)出現(xiàn)無(wú)解的情形。下面進(jìn)一步來(lái)研究這種情形下解三角形的問(wèn)題。.講授新課探索研究例1在A(yíng)BC中,已知,討論三角形解的情況分析:先由可進(jìn)一步求出B;則從而1當(dāng)A為鈍角或直角時(shí),必須才能有且只有一解;否則無(wú)解。2當(dāng)A為銳角時(shí),如果,那么只有一解;如果,那么可以分下面三種情況來(lái)討論:(1)若,則有兩解;(2)若,則只有一解;(3)若,則無(wú)解。(以上解答過(guò)程詳見(jiàn)課本第910頁(yè))評(píng)述:注意在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),只有當(dāng)A為銳角且時(shí),
19、有兩解;其它情況時(shí)則只有一解或無(wú)解。隨堂練習(xí)1(1)在A(yíng)BC中,已知,試判斷此三角形的解的情況。(2)在A(yíng)BC中,若,則符合題意的b的值有_個(gè)。(3)在A(yíng)BC中,如果利用正弦定理解三角形有兩解,求x的取值范圍。(答案:(1)有兩解;(2)0;(3)例2在A(yíng)BC中,已知,判斷ABC的類(lèi)型。分析:由余弦定理可知(注意:)解:,即,。隨堂練習(xí)2(1)在A(yíng)BC中,已知,判斷ABC的類(lèi)型。 (2)已知ABC滿(mǎn)足條件,判斷ABC的類(lèi)型。 (答案:(1);(2)ABC是等腰或直角三角形)例3在A(yíng)BC中,面積為,求的值分析:可利用三角形面積定理以及正弦定理解:由得,則=3,即,從而.課堂練習(xí)(1)在A(yíng)BC中,
20、若,且此三角形的面積,求角C(2)在A(yíng)BC中,其三邊分別為a、b、c,且三角形的面積,求角C(答案:(1)或;(2).課時(shí)小結(jié)(1)在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),有兩解或一解或無(wú)解等情形;(2)三角形各種類(lèi)型的判定方法;(3)三角形面積定理的應(yīng)用。.課后作業(yè)(1)在A(yíng)BC中,已知,試判斷此三角形的解的情況。(2)設(shè)x、x+1、x+2是鈍角三角形的三邊長(zhǎng),求實(shí)數(shù)x的取值范圍。(3)在A(yíng)BC中,判斷ABC的形狀。(4)三角形的兩邊分別為3cm,5cm,它們所夾的角的余弦為方程的根,求這個(gè)三角形的面積。板書(shū)設(shè)計(jì)授后記課題: 2.2解三角形應(yīng)用舉例第一課時(shí)授課類(lèi)型:新授課教學(xué)目標(biāo)知識(shí)與
21、技能:能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)測(cè)量距離的實(shí)際問(wèn)題,了解常用的測(cè)量相關(guān)術(shù)語(yǔ)過(guò)程與方法:首先通過(guò)巧妙的設(shè)疑,順利地引導(dǎo)新課,為以后的幾節(jié)課做良好鋪墊。其次結(jié)合學(xué)生的實(shí)際情況,采用“提出問(wèn)題引發(fā)思考探索猜想總結(jié)規(guī)律反饋訓(xùn)練”的教學(xué)過(guò)程,根據(jù)大綱要求以及教學(xué)內(nèi)容之間的內(nèi)在關(guān)系,鋪開(kāi)例題,設(shè)計(jì)變式,同時(shí)通過(guò)多媒體、圖形觀(guān)察等直觀(guān)演示,幫助學(xué)生掌握解法,能夠類(lèi)比解決實(shí)際問(wèn)題。對(duì)于例2這樣的開(kāi)放性題目要鼓勵(lì)學(xué)生討論,開(kāi)放多種思路,引導(dǎo)學(xué)生發(fā)現(xiàn)問(wèn)題并進(jìn)行適當(dāng)?shù)闹更c(diǎn)和矯正情感態(tài)度與價(jià)值觀(guān):激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值;同時(shí)培養(yǎng)學(xué)生運(yùn)用圖形、數(shù)學(xué)符號(hào)表達(dá)題意和應(yīng)用轉(zhuǎn)化思想
22、解決數(shù)學(xué)問(wèn)題的能力教學(xué)重點(diǎn)實(shí)際問(wèn)題中抽象出一個(gè)或幾個(gè)三角形,然后逐個(gè)解決三角形,得到實(shí)際問(wèn)題的解教學(xué)難點(diǎn)根據(jù)題意建立數(shù)學(xué)模型,畫(huà)出示意圖教學(xué)過(guò)程.課題導(dǎo)入1、復(fù)習(xí)舊知復(fù)習(xí)提問(wèn)什么是正弦定理、余弦定理以及它們可以解決哪些類(lèi)型的三角形?2、設(shè)置情境請(qǐng)學(xué)生回答完后再提問(wèn):前面引言第一章“解三角形”中,我們遇到這么一個(gè)問(wèn)題,“遙不可及的月亮離我們地球究竟有多遠(yuǎn)呢?”在古代,天文學(xué)家沒(méi)有先進(jìn)的儀器就已經(jīng)估算出了兩者的距離,是什么神奇的方法探索到這個(gè)奧秘的呢?我們知道,對(duì)于未知的距離、高度等,存在著許多可供選擇的測(cè)量方案,比如可以應(yīng)用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在
23、實(shí)際測(cè)量問(wèn)題的真實(shí)背景下,某些方法會(huì)不能實(shí)施。如因?yàn)闆](méi)有足夠的空間,不能用全等三角形的方法來(lái)測(cè)量,所以,有些方法會(huì)有局限性。于是上面介紹的問(wèn)題是用以前的方法所不能解決的。今天我們開(kāi)始學(xué)習(xí)正弦定理、余弦定理在科學(xué)實(shí)踐中的重要應(yīng)用,首先研究如何測(cè)量距離。.講授新課(1)解決實(shí)際測(cè)量問(wèn)題的過(guò)程一般要充分認(rèn)真理解題意,正確做出圖形,把實(shí)際問(wèn)題里的條件和所求轉(zhuǎn)換成三角形中的已知和未知的邊、角,通過(guò)建立數(shù)學(xué)模型來(lái)求解例題講解(2)例1、如圖,設(shè)A、B兩點(diǎn)在河的兩岸,要測(cè)量?jī)牲c(diǎn)之間的距離,測(cè)量者在A(yíng)的同側(cè),在所在的河岸邊選定一點(diǎn)C,測(cè)出AC的距離是55m,BAC=,ACB=。求A、B兩點(diǎn)的距離(精確到0.1
24、m)啟發(fā)提問(wèn)1:ABC中,根據(jù)已知的邊和對(duì)應(yīng)角,運(yùn)用哪個(gè)定理比較適當(dāng)?啟發(fā)提問(wèn)2:運(yùn)用該定理解題還需要那些邊和角呢?請(qǐng)學(xué)生回答。分析:這是一道關(guān)于測(cè)量從一個(gè)可到達(dá)的點(diǎn)到一個(gè)不可到達(dá)的點(diǎn)之間的距離的問(wèn)題,題目條件告訴了邊AB的對(duì)角,AC為已知邊,再根據(jù)三角形的內(nèi)角和定理很容易根據(jù)兩個(gè)已知角算出AC的對(duì)角,應(yīng)用正弦定理算出AB邊。解:根據(jù)正弦定理,得 = AB = = = = 65.7(m)答:A、B兩點(diǎn)間的距離為65.7米變式練習(xí):兩燈塔A、B與海洋觀(guān)察站C的距離都等于a km,燈塔A在觀(guān)察站C的北偏東30,燈塔B在觀(guān)察站C南偏東60,則A、B之間的距離為多少?老師指導(dǎo)學(xué)生畫(huà)圖,建立數(shù)學(xué)模型。解
25、略:a km例2、如圖,A、B兩點(diǎn)都在河的對(duì)岸(不可到達(dá)),設(shè)計(jì)一種測(cè)量A、B兩點(diǎn)間距離的方法。分析:這是例1的變式題,研究的是兩個(gè)不可到達(dá)的點(diǎn)之間的距離測(cè)量問(wèn)題。首先需要構(gòu)造三角形,所以需要確定C、D兩點(diǎn)。根據(jù)正弦定理中已知三角形的任意兩個(gè)內(nèi)角與一邊既可求出另兩邊的方法,分別求出AC和BC,再利用余弦定理可以計(jì)算出AB的距離。解:測(cè)量者可以在河岸邊選定兩點(diǎn)C、D,測(cè)得CD=a,并且在C、D兩點(diǎn)分別測(cè)得BCA=,ACD=,CDB=,BDA =,在A(yíng)DC和BDC中,應(yīng)用正弦定理得 AC = = BC = = 計(jì)算出AC和BC后,再在A(yíng)BC中,應(yīng)用余弦定理計(jì)算出AB兩點(diǎn)間的距離 AB = 分組討論
26、:還沒(méi)有其它的方法呢?師生一起對(duì)不同方法進(jìn)行對(duì)比、分析。變式訓(xùn)練:若在河岸選取相距40米的C、D兩點(diǎn),測(cè)得BCA=60,ACD=30,CDB=45,BDA =60略解:將題中各已知量代入例2推出的公式,得AB=20評(píng)注:可見(jiàn),在研究三角形時(shí),靈活根據(jù)兩個(gè)定理可以尋找到多種解決問(wèn)題的方案,但有些過(guò)程較繁復(fù),如何找到最優(yōu)的方法,最主要的還是分析兩個(gè)定理的特點(diǎn),結(jié)合題目條件來(lái)選擇最佳的計(jì)算方式。學(xué)生閱讀課本4頁(yè),了解測(cè)量中基線(xiàn)的概念,并找到生活中的相應(yīng)例子。.課堂練習(xí)課本第14頁(yè)練習(xí)第1、2題.課時(shí)小結(jié)解斜三角形應(yīng)用題的一般步驟:(1)分析:理解題意,分清已知與未知,畫(huà)出示意圖(2)建模:根據(jù)已知條
27、件與求解目標(biāo),把已知量與求解量盡量集中在有關(guān)的三角形中,建立一個(gè)解斜三角形的數(shù)學(xué)模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得數(shù)學(xué)模型的解(4)檢驗(yàn):檢驗(yàn)上述所求的解是否符合實(shí)際意義,從而得出實(shí)際問(wèn)題的解.課后作業(yè)課本第22頁(yè)第1、2、3題板書(shū)設(shè)計(jì)授后記課題: 2.2解三角形應(yīng)用舉例第二課時(shí)授課類(lèi)型:新授課教學(xué)目標(biāo)知識(shí)與技能:能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)底部不可到達(dá)的物體高度測(cè)量的問(wèn)題過(guò)程與方法:本節(jié)課是解三角形應(yīng)用舉例的延伸。采用啟發(fā)與嘗試的方法,讓學(xué)生在溫故知新中學(xué)會(huì)正確識(shí)圖、畫(huà)圖、想圖,幫助學(xué)生逐步構(gòu)建知識(shí)框架。通過(guò)3道例題的安排和練習(xí)的訓(xùn)練來(lái)鞏固深化
28、解三角形實(shí)際問(wèn)題的一般方法。教學(xué)形式要堅(jiān)持引導(dǎo)討論歸納,目的不在于讓學(xué)生記住結(jié)論,更多的要養(yǎng)成良好的研究、探索習(xí)慣。作業(yè)設(shè)計(jì)思考題,提供學(xué)生更廣闊的思考空間情感態(tài)度與價(jià)值觀(guān):進(jìn)一步培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的意識(shí)及觀(guān)察、歸納、類(lèi)比、概括的能力教學(xué)重點(diǎn)結(jié)合實(shí)際測(cè)量工具,解決生活中的測(cè)量高度問(wèn)題教學(xué)難點(diǎn)能觀(guān)察較復(fù)雜的圖形,從中找到解決問(wèn)題的關(guān)鍵條件教學(xué)過(guò)程.課題導(dǎo)入提問(wèn):現(xiàn)實(shí)生活中,人們是怎樣測(cè)量底部不可到達(dá)的建筑物高度呢?又怎樣在水平飛行的飛機(jī)上測(cè)量飛機(jī)下方山頂?shù)暮0胃叨饶??今天我們就?lái)共同探討這方面的問(wèn)題.講授新課范例講解例1、AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測(cè)量
29、建筑物高度AB的方法。分析:求AB長(zhǎng)的關(guān)鍵是先求AE,在A(yíng)CE中,如能求出C點(diǎn)到建筑物頂部A的距離CA,再測(cè)出由C點(diǎn)觀(guān)察A的仰角,就可以計(jì)算出AE的長(zhǎng)。解:選擇一條水平基線(xiàn)HG,使H、G、B三點(diǎn)在同一條直線(xiàn)上。由在H、G兩點(diǎn)用測(cè)角儀器測(cè)得A的仰角分別是、,CD = a,測(cè)角儀器的高是h,那么,在A(yíng)CD中,根據(jù)正弦定理可得AC = AB = AE + h = AC+ h = + h例2、如圖,在山頂鐵塔上B處測(cè)得地面上一點(diǎn)A的俯角=54,在塔底C處測(cè)得A處的俯角=50。已知鐵塔BC部分的高為27.3 m,求出山高CD(精確到1 m)師:根據(jù)已知條件,大家能設(shè)計(jì)出解題方案嗎?(給時(shí)間給學(xué)生討論思考
30、)若在A(yíng)BD中求CD,則關(guān)鍵需要求出哪條邊呢?生:需求出BD邊。師:那如何求BD邊呢?生:可首先求出AB邊,再根據(jù)BAD=求得。解:在A(yíng)BC中, BCA=90+,ABC =90-,BAC=- ,BAD =.根據(jù)正弦定理, = 所以 AB =解RtABD中,得 BD =ABsinBAD=將測(cè)量數(shù)據(jù)代入上式,得 BD = = 177 (m)CD =BD -BC177-27.3=150(m)答:山的高度約為150米.師:有沒(méi)有別的解法呢?生:若在A(yíng)CD中求CD,可先求出AC。師:分析得很好,請(qǐng)大家接著思考如何求出AC?生:同理,在A(yíng)BC中,根據(jù)正弦定理求得。(解題過(guò)程略)例3、如圖,一輛汽車(chē)在一條水
31、平的公路上向正東行駛,到A處時(shí)測(cè)得公路南側(cè)遠(yuǎn)處一山頂D在東偏南15的方向上,行駛5km后到達(dá)B處,測(cè)得此山頂在東偏南25的方向上,仰角為8,求此山的高度CD.師:欲求出CD,大家思考在哪個(gè)三角形中研究比較適合呢?生:在BCD中師:在BCD中,已知BD或BC都可求出CD,根據(jù)條件,易計(jì)算出哪條邊的長(zhǎng)?生:BC邊解:在A(yíng)BC中, A=15,C= 25-15=10,根據(jù)正弦定理, = , BC = 7.4524(km)CD=BCtanDBCBCtan81047(m)答:山的高度約為1047米.課堂練習(xí)課本第17頁(yè)練習(xí)第1、2、3題.課時(shí)小結(jié)利用正弦定理和余弦定理來(lái)解題時(shí),要學(xué)會(huì)審題及根據(jù)題意畫(huà)方位圖
32、,要懂得從所給的背景資料中進(jìn)行加工、抽取主要因素,進(jìn)行適當(dāng)?shù)暮?jiǎn)化。.課后作業(yè)1、 課本第23頁(yè)練習(xí)第6、7、8題2、 為測(cè)某塔AB的高度,在一幢與塔AB相距20m的樓的樓頂處測(cè)得塔頂A的仰角為30,測(cè)得塔基B的俯角為45,則塔AB的高度為多少m?答案:20+(m)板書(shū)設(shè)計(jì)授后記課題: 2.2解三角形應(yīng)用舉例第三課時(shí)授課類(lèi)型:新授課教學(xué)目標(biāo)知識(shí)與技能:能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)計(jì)算角度的實(shí)際問(wèn)題過(guò)程與方法:本節(jié)課是在學(xué)習(xí)了相關(guān)內(nèi)容后的第三節(jié)課,學(xué)生已經(jīng)對(duì)解法有了基本的了解,這節(jié)課應(yīng)通過(guò)綜合訓(xùn)練強(qiáng)化學(xué)生的相應(yīng)能力。除了安排課本上的例1,還針對(duì)性地選擇了既具典型性有具啟發(fā)性的
33、2道例題,強(qiáng)調(diào)知識(shí)的傳授更重能力的滲透。課堂中要充分體現(xiàn)學(xué)生的主體地位,重過(guò)程,重討論,教師通過(guò)導(dǎo)疑、導(dǎo)思讓學(xué)生有效、積極、主動(dòng)地參與到探究問(wèn)題的過(guò)程中來(lái),逐步讓學(xué)生自主發(fā)現(xiàn)規(guī)律,舉一反三。情感態(tài)度與價(jià)值觀(guān):培養(yǎng)學(xué)生提出問(wèn)題、正確分析問(wèn)題、獨(dú)立解決問(wèn)題的能力,并在教學(xué)過(guò)程中激發(fā)學(xué)生的探索精神。教學(xué)重點(diǎn)能根據(jù)正弦定理、余弦定理的特點(diǎn)找到已知條件和所求角的關(guān)系教學(xué)難點(diǎn)靈活運(yùn)用正弦定理和余弦定理解關(guān)于角度的問(wèn)題教學(xué)過(guò)程.課題導(dǎo)入創(chuàng)設(shè)情境提問(wèn):前面我們學(xué)習(xí)了如何測(cè)量距離和高度,這些實(shí)際上都可轉(zhuǎn)化已知三角形的一些邊和角求其余邊的問(wèn)題。然而在實(shí)際的航海生活中,人們又會(huì)遇到新的問(wèn)題,在浩瀚無(wú)垠的海面上如何確
34、保輪船不迷失方向,保持一定的航速和航向呢?今天我們接著探討這方面的測(cè)量問(wèn)題。.講授新課范例講解例1、如圖,一艘海輪從A出發(fā),沿北偏東75的方向航行67.5 n mile后到達(dá)海島B,然后從B出發(fā),沿北偏東32的方向航行54.0 n mile后達(dá)到海島C.如果下次航行直接從A出發(fā)到達(dá)C,此船應(yīng)該沿怎樣的方向航行,需要航行多少距離?(角度精確到0.1,距離精確到0.01n mile)學(xué)生看圖思考并講述解題思路教師根據(jù)學(xué)生的回答歸納分析:首先根據(jù)三角形的內(nèi)角和定理求出AC邊所對(duì)的角ABC,即可用余弦定理算出AC邊,再根據(jù)正弦定理算出AC邊和AB邊的夾角CAB。解:在A(yíng)BC中,ABC=180- 75+
35、 32=137,根據(jù)余弦定理,AC= = 113.15根據(jù)正弦定理, = sinCAB = = 0.3255,所以 CAB =19.0, 75- CAB =56.0答:此船應(yīng)該沿北偏東56.1的方向航行,需要航行113.15n mile例2、在某點(diǎn)B處測(cè)得建筑物AE的頂端A的仰角為,沿BE方向前進(jìn)30m,至點(diǎn)C處測(cè)得頂端A的仰角為2,再繼續(xù)前進(jìn)10m至D點(diǎn),測(cè)得頂端A的仰角為4,求的大小和建筑物AE的高。師:請(qǐng)大家根據(jù)題意畫(huà)出方位圖。生:上臺(tái)板演方位圖(上圖)教師先引導(dǎo)和鼓勵(lì)學(xué)生積極思考解題方法,讓學(xué)生動(dòng)手練習(xí),請(qǐng)三位同學(xué)用三種不同方法板演,然后教師補(bǔ)充講評(píng)。解法一:(用正弦定理求解)由已知可
36、得在A(yíng)CD中, AC=BC=30, AD=DC=10, ADC =180-4, = 。 因?yàn)?sin4=2sin2cos2cos2=,得 2=30=15,在RtADE中,AE=ADsin60=15答:所求角為15,建筑物高度為15m解法二:(設(shè)方程來(lái)求解)設(shè)DE= x,AE=h 在 RtACE中,(10+ x) + h=30 在 RtADE中,x+h=(10) 兩式相減,得x=5,h=15在 RtACE中,tan2=2=30,=15 答:所求角為15,建筑物高度為15m解法三:(用倍角公式求解)設(shè)建筑物高為AE=8,由題意,得BAC=, CAD=2,AC = BC =30m , AD = CD
37、 =10m在RtACE中,sin2= - 在RtADE中,sin4=, - 得 cos2=,2=30,=15,AE=ADsin60=15答:所求角為15,建筑物高度為15m例3、某巡邏艇在A(yíng)處發(fā)現(xiàn)北偏東45相距9海里的C處有一艘走私船,正沿南偏東75的方向以10海里/小時(shí)的速度向我海岸行駛,巡邏艇立即以14海里/小時(shí)的速度沿著直線(xiàn)方向追去,問(wèn)巡邏艇應(yīng)該沿什么方向去追?需要多少時(shí)間才追趕上該走私船?師:你能根據(jù)題意畫(huà)出方位圖?教師啟發(fā)學(xué)生做圖建立數(shù)學(xué)模型分析:這道題的關(guān)鍵是計(jì)算出三角形的各邊,即需要引入時(shí)間這個(gè)參變量。解:如圖,設(shè)該巡邏艇沿AB方向經(jīng)過(guò)x小時(shí)后在B處追上走私船,則CB=10x,
38、AB=14x,AC=9,ACB=+= (14x) = 9+ (10x) -2910xcos化簡(jiǎn)得32x-30x-27=0,即x=,或x=-(舍去)所以BC = 10x =15,AB =14x =21,又因?yàn)閟inBAC =BAC =38,或BAC =141(鈍角不合題意,舍去),38+=83答:巡邏艇應(yīng)該沿北偏東83方向去追,經(jīng)過(guò)1.4小時(shí)才追趕上該走私船.評(píng)注:在求解三角形中,我們可以根據(jù)正弦函數(shù)的定義得到兩個(gè)解,但作為有關(guān)現(xiàn)實(shí)生活的應(yīng)用題,必須檢驗(yàn)上述所求的解是否符合實(shí)際意義,從而得出實(shí)際問(wèn)題的解.課堂練習(xí)課本第18頁(yè)練習(xí).課時(shí)小結(jié)解三角形的應(yīng)用題時(shí),通常會(huì)遇到兩種情況:(1)已知量與未知
39、量全部集中在一個(gè)三角形中,依次利用正弦定理或余弦定理解之。(2)已知量與未知量涉及兩個(gè)或幾個(gè)三角形,這時(shí)需要選擇條件足夠的三角形優(yōu)先研究,再逐步在其余的三角形中求出問(wèn)題的解。.課后作業(yè)1、課本第23頁(yè)練習(xí)第9、10、11題2、我艦在敵島A南偏西相距12海里的B處,發(fā)現(xiàn)敵艦正由島沿北偏西的方向以10海里/小時(shí)的速度航行.問(wèn)我艦需以多大速度、沿什么方向航行才能用2小時(shí)追上敵艦?(角度用反三角函數(shù)表示)板書(shū)設(shè)計(jì)授后記課題: 2.2解三角形應(yīng)用舉例授課類(lèi)型:新授課教學(xué)目標(biāo)知識(shí)與技能:能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法進(jìn)一步解決有關(guān)三角形的問(wèn)題, 掌握三角形的面積公式的簡(jiǎn)單推導(dǎo)和應(yīng)用過(guò)程與方法:本節(jié)
40、課補(bǔ)充了三角形新的面積公式,巧妙設(shè)疑,引導(dǎo)學(xué)生證明,同時(shí)總結(jié)出該公式的特點(diǎn),循序漸進(jìn)地具體運(yùn)用于相關(guān)的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學(xué)知識(shí)的生動(dòng)運(yùn)用,教師要放手讓學(xué)生摸索,使學(xué)生在具體的論證中靈活把握正弦定理和余弦定理的特點(diǎn),能不拘一格,一題多解。只要學(xué)生自行掌握了兩定理的特點(diǎn),就能很快開(kāi)闊思維,有利地進(jìn)一步突破難點(diǎn)。情感態(tài)度與價(jià)值觀(guān):讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),加深對(duì)所學(xué)定理的理解,提高創(chuàng)新能力;進(jìn)一步培養(yǎng)學(xué)生研究和發(fā)現(xiàn)能力,讓學(xué)生在探究中體驗(yàn)愉悅的成功體驗(yàn)教學(xué)重點(diǎn)推導(dǎo)三角形的面積公式并解決簡(jiǎn)單的相關(guān)題目教學(xué)難點(diǎn)利用正弦定理、余弦定理來(lái)求證簡(jiǎn)單的證明題教學(xué)過(guò)程.課題導(dǎo)入創(chuàng)設(shè)情境師:以前
41、我們就已經(jīng)接觸過(guò)了三角形的面積公式,今天我們來(lái)學(xué)習(xí)它的另一個(gè)表達(dá)公式。在A(yíng)BC中,邊BC、CA、AB上的高分別記為h、h、h,那么它們?nèi)绾斡靡阎吅徒潜硎??生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA師:根據(jù)以前學(xué)過(guò)的三角形面積公式S=ah,應(yīng)用以上求出的高的公式如h=bsinC代入,可以推導(dǎo)出下面的三角形面積公式,S=absinC,大家能推出其它的幾個(gè)公式嗎?生:同理可得,S=bcsinA, S=acsinB師:除了知道某條邊和該邊上的高可求出三角形的面積外,知道哪些條件也可求出三角形的面積呢?生:如能知道三角形的任意兩邊以及它們夾角的正弦即可求解.講
42、授新課范例講解例1、在A(yíng)BC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm)(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三邊的長(zhǎng)分別為a=41.4cm,b=27.3cm,c=38.7cm分析:這是一道在不同已知條件下求三角形的面積的問(wèn)題,與解三角形問(wèn)題有密切的關(guān)系,我們可以應(yīng)用解三角形面積的知識(shí),觀(guān)察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。解:(1)應(yīng)用S=acsinB,得 S=14.823.5sin148.590.9(cm)(2)根據(jù)正弦定理, = c = S = bcsinA =
43、bA = 180-(B + C)= 180-(62.7+ 65.8)=51.5 S = 3.164.0(cm)(3)根據(jù)余弦定理的推論,得cosB = = 0.7697sinB = 0.6384應(yīng)用S=acsinB,得S 41.438.70.6384511.4(cm)例2、如圖,在某市進(jìn)行城市環(huán)境建設(shè)中,要把一個(gè)三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過(guò)測(cè)量得到這個(gè)三角形區(qū)域的三條邊長(zhǎng)分別為68m,88m,127m,這個(gè)區(qū)域的面積是多少?(精確到0.1cm)?師:你能把這一實(shí)際問(wèn)題化歸為一道數(shù)學(xué)題目嗎?生:本題可轉(zhuǎn)化為已知三角形的三邊,求角的問(wèn)題,再利用三角形的面積公式求解。由學(xué)生解答,老師巡視并對(duì)學(xué)生
44、解答進(jìn)行講評(píng)小結(jié)。解:設(shè)a=68m,b=88m,c=127m,根據(jù)余弦定理的推論,cosB= =0.7532sinB=0.6578應(yīng)用S=acsinB S 681270.65782840.38(m)答:這個(gè)區(qū)域的面積是2840.38m。例3、在A(yíng)BC中,求證:(1)(2)+=2(bccosA+cacosB+abcosC)分析:這是一道關(guān)于三角形邊角關(guān)系恒等式的證明問(wèn)題,觀(guān)察式子左右兩邊的特點(diǎn),聯(lián)想到用正弦定理來(lái)證明證明:(1)根據(jù)正弦定理,可設(shè) = = = k顯然 k0,所以 左邊= =右邊(2)根據(jù)余弦定理的推論, 右邊=2(bc+ca+ab) =(b+c- a)+(c+a-b)+(a+b-
45、c)=a+b+c=左邊變式練習(xí)1:已知在A(yíng)BC中,B=30,b=6,c=6,求a及ABC的面積S提示:解有關(guān)已知兩邊和其中一邊對(duì)角的問(wèn)題,注重分情況討論解的個(gè)數(shù)。答案:a=6,S=9;a=12,S=18變式練習(xí)2:判斷滿(mǎn)足下列條件的三角形形狀,(1) acosA = bcosB(2) sinC =提示:利用正弦定理或余弦定理,“化邊為角”或“化角為邊”(1) 師:大家嘗試分別用兩個(gè)定理進(jìn)行證明。生1:(余弦定理)得a=bc=根據(jù)邊的關(guān)系易得是等腰三角形或直角三角形生2:(正弦定理)得sinAcosA=sinBcosB,sin2A=sin2B,2A=2B,A=B根據(jù)邊的關(guān)系易得是等腰三角形師:根
46、據(jù)該同學(xué)的做法,得到的只有一種情況,而第一位同學(xué)的做法有兩種,請(qǐng)大家思考,誰(shuí)的正確呢?生:第一位同學(xué)的正確。第二位同學(xué)遺漏了另一種情況,因?yàn)閟in2A=sin2B,有可能推出2A與2B兩個(gè)角互補(bǔ),即2A+2B=180,A+B=90(2)(解略)直角三角形.課堂練習(xí)課本第21頁(yè)練習(xí)第1、2題.課時(shí)小結(jié)利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡(jiǎn)并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以?xún)烧呋煊谩?課后作業(yè)課本第23頁(yè)練習(xí)第12、14、15題板書(shū)設(shè)計(jì)授后記第二章數(shù)列 課題: 2.1數(shù)列的概念與簡(jiǎn)單表示法授課類(lèi)型:
47、新授課(第1課時(shí))教學(xué)目標(biāo)知識(shí)與技能:理解數(shù)列及其有關(guān)概念,了解數(shù)列和函數(shù)之間的關(guān)系;了解數(shù)列的通項(xiàng)公式,并會(huì)用通項(xiàng)公式寫(xiě)出數(shù)列的任意一項(xiàng);對(duì)于比較簡(jiǎn)單的數(shù)列,會(huì)根據(jù)其前幾項(xiàng)寫(xiě)出它的個(gè)通項(xiàng)公式。過(guò)程與方法:通過(guò)對(duì)一列數(shù)的觀(guān)察、歸納,寫(xiě)出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀(guān)察能力和抽象概括能力情感態(tài)度與價(jià)值觀(guān):通過(guò)本節(jié)課的學(xué)習(xí),體會(huì)數(shù)學(xué)來(lái)源于生活,提高數(shù)學(xué)學(xué)習(xí)的興趣。教學(xué)重點(diǎn)數(shù)列及其有關(guān)概念,通項(xiàng)公式及其應(yīng)用教學(xué)難點(diǎn)根據(jù)一些數(shù)列的前幾項(xiàng)抽象、歸納數(shù)列的通項(xiàng)公式教學(xué)過(guò)程.課題導(dǎo)入三角形數(shù):1,3,6,10,正方形數(shù):1,4,9,16,25,.講授新課 數(shù)列的定義:按一定次序排列的一列數(shù)叫做數(shù)列.注
48、意:數(shù)列的數(shù)是按一定次序排列的,因此,如果組成兩個(gè)數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的數(shù)列;定義中并沒(méi)有規(guī)定數(shù)列中的數(shù)必須不同,因此,同一個(gè)數(shù)在數(shù)列中可以重復(fù)出現(xiàn). 數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù)都叫做這個(gè)數(shù)列的項(xiàng). 各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng)),第2項(xiàng),第n 項(xiàng),.例如,上述例子均是數(shù)列,其中中,“4”是這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng)),“9”是這個(gè)數(shù)列中的第6項(xiàng).數(shù)列的一般形式:,或簡(jiǎn)記為,其中是數(shù)列的第n項(xiàng)結(jié)合上述例子,幫助學(xué)生理解數(shù)列及項(xiàng)的定義. 中,這是一個(gè)數(shù)列,它的首項(xiàng)是“1”,“”是這個(gè)數(shù)列的第“3”項(xiàng),等等下面我們?cè)賮?lái)看這些數(shù)列的每一項(xiàng)與這一項(xiàng)的序號(hào)是否有一定的對(duì)應(yīng)關(guān)
49、系?這一關(guān)系可否用一個(gè)公式表示?(引導(dǎo)學(xué)生進(jìn)一步理解數(shù)列與項(xiàng)的定義,從而發(fā)現(xiàn)數(shù)列的通項(xiàng)公式)對(duì)于上面的數(shù)列,第一項(xiàng)與這一項(xiàng)的序號(hào)有這樣的對(duì)應(yīng)關(guān)系:項(xiàng) 序號(hào) 1 2 3 4 5這個(gè)數(shù)的第一項(xiàng)與這一項(xiàng)的序號(hào)可用一個(gè)公式:來(lái)表示其對(duì)應(yīng)關(guān)系即:只要依次用1,2,3代替公式中的n,就可以求出該數(shù)列相應(yīng)的各項(xiàng)結(jié)合上述其他例子,練習(xí)找其對(duì)應(yīng)關(guān)系 數(shù)列的通項(xiàng)公式:如果數(shù)列的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式來(lái)表示,那么這個(gè)公式就叫做這個(gè)數(shù)列的通項(xiàng)公式.注意:并不是所有數(shù)列都能寫(xiě)出其通項(xiàng)公式,如上述數(shù)列;一個(gè)數(shù)列的通項(xiàng)公式有時(shí)是不唯一的,如數(shù)列:1,0,1,0,1,0,它的通項(xiàng)公式可以是,也可以是.數(shù)列通項(xiàng)公式
50、的作用:求數(shù)列中任意一項(xiàng);檢驗(yàn)?zāi)硵?shù)是否是該數(shù)列中的一項(xiàng).數(shù)列的通項(xiàng)公式具有雙重身份,它表示了數(shù)列的第 項(xiàng),又是這個(gè)數(shù)列中所有各項(xiàng)的一般表示通項(xiàng)公式反映了一個(gè)數(shù)列項(xiàng)與項(xiàng)數(shù)的函數(shù)關(guān)系,給了數(shù)列的通項(xiàng)公式,這個(gè)數(shù)列便確定了,代入項(xiàng)數(shù)就可求出數(shù)列的每一項(xiàng)5.數(shù)列與函數(shù)的關(guān)系數(shù)列可以看成以正整數(shù)集N*(或它的有限子集1,2,3,n)為定義域的函數(shù),當(dāng)自變量從小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值。反過(guò)來(lái),對(duì)于函數(shù)y=f(x),如果f(i)(i=1、2、3、4)有意義,那么我們可以得到一個(gè)數(shù)列f(1)、 f(2)、 f(3)、 f(4),f(n),6數(shù)列的分類(lèi):1)根據(jù)數(shù)列項(xiàng)數(shù)的多少分:有窮數(shù)列:項(xiàng)數(shù)有限的數(shù)列.例如數(shù)列1,2,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 經(jīng)營(yíng)公司企業(yè)年度工作計(jì)劃
- 小學(xué)六年級(jí)期中考試復(fù)習(xí)計(jì)劃
- 加油站201年下半年工作計(jì)劃
- 防疫及衛(wèi)生協(xié)管工作計(jì)劃
- 教師信息技術(shù)校本研修工作計(jì)劃范文
- 2025學(xué)年數(shù)學(xué)備課組工作計(jì)劃
- 《水處理技術(shù)介紹》課件
- 《大吸收波長(zhǎng)的計(jì)算》課件
- 《EXO成員總介紹》課件
- 《外盤(pán)期貨介紹》課件
- 2024年全國(guó)國(guó)家版圖知識(shí)競(jìng)賽題庫(kù)及答案(中小學(xué)組)
- (正式版)JTT 1218.5-2024 城市軌道交通運(yùn)營(yíng)設(shè)備維修與更新技術(shù)規(guī)范 第5部分:通信
- 元宇宙技術(shù)與應(yīng)用智慧樹(shù)知到期末考試答案章節(jié)答案2024年中國(guó)科學(xué)技術(shù)大學(xué)
- XX鄉(xiāng)村建設(shè)投資集團(tuán)有限公司組建方案
- 客運(yùn)車(chē)輛冬季安全培訓(xùn)
- 電大財(cái)務(wù)大數(shù)據(jù)分析編程作業(yè)4
- 新中國(guó)史智慧樹(shù)知到期末考試答案2024年
- 揭開(kāi)人際吸引的奧秘 心理健康七年級(jí)全一冊(cè)
- 景觀(guān)生態(tài)學(xué)基礎(chǔ)智慧樹(shù)知到期末考試答案2024年
- 項(xiàng)目用地報(bào)批知識(shí)講座
- 2025屆高三英語(yǔ)一輪復(fù)習(xí)讀后續(xù)寫(xiě)微技能之無(wú)靈主語(yǔ)
評(píng)論
0/150
提交評(píng)論