![均值不等式方法及例題[優(yōu)選試題]_第1頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-6/24/f2180899-df70-4d12-8317-20a63f7e8dc2/f2180899-df70-4d12-8317-20a63f7e8dc21.gif)
![均值不等式方法及例題[優(yōu)選試題]_第2頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-6/24/f2180899-df70-4d12-8317-20a63f7e8dc2/f2180899-df70-4d12-8317-20a63f7e8dc22.gif)
![均值不等式方法及例題[優(yōu)選試題]_第3頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-6/24/f2180899-df70-4d12-8317-20a63f7e8dc2/f2180899-df70-4d12-8317-20a63f7e8dc23.gif)
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、均值不等式當(dāng)且僅當(dāng)ab時(shí)等號(hào)成立)是一個(gè)重要的不等式,利用它可以求解函數(shù)最值問(wèn)題。對(duì)于有些題目,可以直接利用公式求解。但是有些題目必須進(jìn)行必要的變形才能利用均值不等式求解。下面是一些常用的變形方法。一、配湊1. 湊系數(shù)例1. 當(dāng)時(shí),求的最大值。解析:由知,利用均值不等式求最值,必須和為定值或積為定值,此題為兩個(gè)式子積的形式,但其和不是定值。注意到為定值,故只需將湊上一個(gè)系數(shù)即可。當(dāng)且僅當(dāng),即x2時(shí)取等號(hào)。所以當(dāng)x2時(shí),的最大值為8。評(píng)注:本題無(wú)法直接運(yùn)用均值不等式求解,但湊系數(shù)后可得到和為定值,從而可利用均值不等式求最大值。2. 湊項(xiàng)例2. 已知,求函數(shù)的最大值。解析:由題意知,首先要調(diào)整符號(hào)
2、,又不是定值,故需對(duì)進(jìn)行湊項(xiàng)才能得到定值。當(dāng)且僅當(dāng),即時(shí)等號(hào)成立。評(píng)注:本題需要調(diào)整項(xiàng)的符號(hào),又要配湊項(xiàng)的系數(shù),使其積為定值。3. 分離 例3. 求的值域。解析:本題看似無(wú)法運(yùn)用均值不等式,不妨將分子配方湊出含有(x1)的項(xiàng),再將其分離。當(dāng),即時(shí)(當(dāng)且僅當(dāng)x1時(shí)取“”號(hào))。當(dāng),即時(shí)(當(dāng)且僅當(dāng)x3時(shí)取“”號(hào))。的值域?yàn)椤Tu(píng)注:分式函數(shù)求最值,通常化成g(x)恒正或恒負(fù)的形式,然后運(yùn)用均值不等式來(lái)求最值。二、整體代換 例4. 已知,求的最小值。解法1:不妨將乘以1,而1用a2b代換。當(dāng)且僅當(dāng)時(shí)取等號(hào),由即時(shí),的最小值為。解法2:將分子中的1用代換。評(píng)注:本題巧妙運(yùn)用“1”的代換,得到,而與的積為定值,即可用均值不等式求得的最小值。三、換元 例5. 求函數(shù)的最大值。解析:變量代換,令,則當(dāng)t0時(shí),y0當(dāng)時(shí), 當(dāng)且僅當(dāng),即時(shí)取等號(hào)故。評(píng)注:本題通過(guò)換元法使問(wèn)題得到了簡(jiǎn)化,而且將問(wèn)題轉(zhuǎn)化為熟悉的分式型函數(shù)的求最值問(wèn)題,從而為構(gòu)造積為定值創(chuàng)造有利條件。四、取平方例6. 求函數(shù)的最大值。解析:注意到的和為定值。又,所以當(dāng)且僅當(dāng),即時(shí)取等號(hào)。故。評(píng)注:本題將解析式兩邊平方構(gòu)造出“和為定值”,為利用均值不等式創(chuàng)造了條件??傊?,我們利用均值不等式求最值時(shí),一定要注意“一正二定三相等”,同時(shí)還要注意一些變形技巧,積極創(chuàng)造條件利用均值不等式。1. 若,求的最大值。2. 求函數(shù)的最小值。3. 求函
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZZB 3706-2024 石化行業(yè)用不銹鋼閥門(mén)鑄件
- T-ZJCX 0047-2024 浙江省法人數(shù)字證書(shū)應(yīng)用接口規(guī)范
- 二零二五年度宅基地占用權(quán)轉(zhuǎn)讓協(xié)議
- 獨(dú)立董事聘用合同(二零二五年度)-能源行業(yè)節(jié)能減排
- 2025年度門(mén)面買(mǎi)賣(mài)合同(含廣告位租賃)
- 二零二五年度音樂(lè)作品著作權(quán)許可與網(wǎng)絡(luò)播放協(xié)議
- 2025年度校外住宿生安全管理及意外傷害賠償協(xié)議
- 2025年度相鄰宅基地邊界爭(zhēng)議解決與宅基地置換協(xié)議
- 二零二五年度拆除工程合同糾紛解決機(jī)制合同
- 二零二五年度自然人個(gè)人醫(yī)療設(shè)備貸款合同生效與還款規(guī)定
- 天津2025年天津市機(jī)關(guān)后勤事務(wù)服務(wù)中心招聘6人筆試歷年參考題庫(kù)附帶答案詳解
- 2025年天津三源電力集團(tuán)限公司社會(huì)招聘33人高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 西安2025年陜西西安音樂(lè)學(xué)院專任教師招聘20人筆試歷年參考題庫(kù)附帶答案詳解
- 國(guó)家安全與生態(tài)安全
- 2024-2025學(xué)年第二學(xué)期學(xué)校團(tuán)委工作計(jì)劃(附2月-6月安排表)
- 培養(yǎng)自律能力主題班會(huì)
- 中職高教版(2023)語(yǔ)文職業(yè)模塊-第一單元1.2寧夏閩寧鎮(zhèn):昔日干沙灘今日金沙灘【課件】
- 巴厘島旅游流程介紹
- 【物理】牛頓第一定律 2024-2025學(xué)年人教版物理八年級(jí)下冊(cè)
- 嬰幼兒電擊傷實(shí)踐操作張春芳講解
- 2025網(wǎng)格員考試題庫(kù)及參考答案
評(píng)論
0/150
提交評(píng)論