版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、1234點(diǎn)線面點(diǎn)線面5截切截切678910111221 投影的形成及常用的投影方法投影的形成及常用的投影方法投影方法投影方法中心投影法中心投影法平行投影法平行投影法直角投影法(正投影法)直角投影法(正投影法)斜角投影法斜角投影法畫透視圖畫透視圖畫斜軸測圖畫斜軸測圖畫工程圖樣畫工程圖樣及正軸測圖及正軸測圖13中心投影法中心投影法 投射中心、物體、投影面三者之間投射中心、物體、投影面三者之間的相對距離對投影的大小有影響。的相對距離對投影的大小有影響。度量性較差度量性較差投影特性投影特性投射線投射線投射中心投射中心物體物體投影面投影面投影投影物體位置改物體位置改變,投影大變,投影大小也改變小也改變1
2、4平行投影法平行投影法斜角投影法斜角投影法投投 影影 特特 性性投影大小與物體和投影面之間的距離無關(guān)。投影大小與物體和投影面之間的距離無關(guān)。度量性較好度量性較好工程圖樣多數(shù)采用正投影法繪制。工程圖樣多數(shù)采用正投影法繪制。投射線互相平行投射線互相平行且垂直于投影面且垂直于投影面投射線互相平行投射線互相平行且傾斜于投影面且傾斜于投影面直角(正)投影法直角(正)投影法15 Pb AP采用多面投影采用多面投影。 過空間點(diǎn)過空間點(diǎn)A的投射線的投射線與投影面與投影面P的交點(diǎn)即為點(diǎn)的交點(diǎn)即為點(diǎn)A在在P面上的投影。面上的投影。B1B2B3 點(diǎn)在一個(gè)投影面上點(diǎn)在一個(gè)投影面上的投影不能確定點(diǎn)的空的投影不能確定點(diǎn)的
3、空間位置。間位置。一、點(diǎn)在一個(gè)投影面上的投影一、點(diǎn)在一個(gè)投影面上的投影a 2.2.1 2.2.1 點(diǎn)的投影點(diǎn)的投影解決辦法?解決辦法?16HWV二、點(diǎn)的三面投影二、點(diǎn)的三面投影投影面投影面正面投影面(簡稱正正面投影面(簡稱正 面或面或V面)面)水平投影面(簡稱水水平投影面(簡稱水 平面或平面或H面)面)側(cè)面投影面(簡稱側(cè)側(cè)面投影面(簡稱側(cè) 面或面或W面)面)投影軸投影軸oXZOX軸軸 V面與面與H面的交線面的交線OZ軸軸 V面與面與W面的交線面的交線OY軸軸 H面與面與W面的交線面的交線Y三個(gè)投影面三個(gè)投影面互相垂直互相垂直17WHVoX空間點(diǎn)空間點(diǎn)A在三個(gè)投影面上的投影在三個(gè)投影面上的投影a
4、 點(diǎn)點(diǎn)A的正面投影的正面投影a點(diǎn)點(diǎn)A的水平投影的水平投影a 點(diǎn)點(diǎn)A的側(cè)面投影的側(cè)面投影空間點(diǎn)用大寫字母空間點(diǎn)用大寫字母表示,點(diǎn)的投影用表示,點(diǎn)的投影用小寫字母表示。小寫字母表示。a aa AZY18WVHXYZOVHWAaa a xaazay向右翻向右翻向下翻向下翻不動(dòng)不動(dòng)投影面展開投影面展開aaZaa yayaXYYO azx19XYZOVHWAaa a 點(diǎn)的投影規(guī)律點(diǎn)的投影規(guī)律: a aOX軸軸 aax= a az=y=A到到V面的距離面的距離a ax= a ay=z=A到到H面的距離面的距離aay= a az=x=A到到W面的距離面的距離xaazayYZaza XYayOaaxaya a
5、 a OZ軸軸20a aax例:已知點(diǎn)的兩個(gè)投影,求第三投影。例:已知點(diǎn)的兩個(gè)投影,求第三投影。a a aaxazaz解法一解法一:通過作通過作45線線使使a az=aax解法二解法二:用圓規(guī)直接量用圓規(guī)直接量取取a az=aaxa 21三、兩點(diǎn)的相對位置三、兩點(diǎn)的相對位置 兩點(diǎn)的相對位置指兩兩點(diǎn)的相對位置指兩點(diǎn)在空間的點(diǎn)在空間的上下、前后、上下、前后、左右左右位置關(guān)系。位置關(guān)系。判斷方法:判斷方法: x 坐標(biāo)大的在左坐標(biāo)大的在左 y 坐標(biāo)大的在前坐標(biāo)大的在前 z 坐標(biāo)大的在上坐標(biāo)大的在上b aa a b bB點(diǎn)在點(diǎn)在A點(diǎn)之點(diǎn)之前、之右、之前、之右、之下。下。XYHYWZ22四、重影點(diǎn):四、重
6、影點(diǎn): 空間兩點(diǎn)在某一投空間兩點(diǎn)在某一投影面上的影面上的投影重合為一投影重合為一點(diǎn)點(diǎn)時(shí),則稱此兩點(diǎn)為時(shí),則稱此兩點(diǎn)為該該投影面投影面的重影點(diǎn)。的重影點(diǎn)。A、C為為H面的重影點(diǎn)面的重影點(diǎn)a a c c 被擋住的投被擋住的投影加影加( )( )A、C為哪個(gè)投為哪個(gè)投影面的重影點(diǎn)影面的重影點(diǎn)呢?呢?a c23aa a b b b2.2.22.2.2直線的投影直線的投影 兩點(diǎn)確定一條直線,將兩兩點(diǎn)確定一條直線,將兩點(diǎn)的同名投影用直線連接,點(diǎn)的同名投影用直線連接,就得到直線的同名投影。就得到直線的同名投影。 直線對一個(gè)投影面的投影特性直線對一個(gè)投影面的投影特性一、直線的投影特性一、直線的投影特性ABab
7、直線垂直于投影面直線垂直于投影面投影重合為一點(diǎn)投影重合為一點(diǎn) 積聚性積聚性直線平行于投影面直線平行于投影面投影反映線段實(shí)長投影反映線段實(shí)長 ab=AB直線傾斜于投影面直線傾斜于投影面投影比空間線段短投影比空間線段短 ab=ABcosABabAMBabm24 直線在三個(gè)投影面中的投影特性直線在三個(gè)投影面中的投影特性投影面平行線投影面平行線平行于某一投影面而平行于某一投影面而與其余兩投影面傾斜與其余兩投影面傾斜投影面垂直線投影面垂直線正平線(平行于面)正平線(平行于面)側(cè)平線(平行于面)側(cè)平線(平行于面)水平線(平行于面)水平線(平行于面)正垂線(垂直于面)正垂線(垂直于面)側(cè)垂線(垂直于面)側(cè)垂
8、線(垂直于面)鉛垂線(垂直于面)鉛垂線(垂直于面)一般位置直線一般位置直線與三個(gè)投影面都傾斜的直線與三個(gè)投影面都傾斜的直線統(tǒng)稱特殊位置直線統(tǒng)稱特殊位置直線垂直于某一投影面垂直于某一投影面25b a aba b b aa b ba 投影面平行線投影面平行線 在其平行的那個(gè)投影面上的投影反映實(shí)長,在其平行的那個(gè)投影面上的投影反映實(shí)長, 并反映直線與另兩投影面傾角的實(shí)大。并反映直線與另兩投影面傾角的實(shí)大。 另兩個(gè)投影面上的投影平行于相應(yīng)的投影另兩個(gè)投影面上的投影平行于相應(yīng)的投影 軸。軸。水平線水平線側(cè)平線側(cè)平線正平線正平線投投 影影 特特 性:性:與與H面的夾角面的夾角: 與與V面的角面的角:與與W
9、面的夾角面的夾角: 實(shí)長實(shí)長實(shí)長實(shí)長實(shí)長實(shí)長ba aa b b 26 反映線段實(shí)長。且垂直反映線段實(shí)長。且垂直于相應(yīng)的投影軸。于相應(yīng)的投影軸。 投影面垂直線投影面垂直線鉛垂線鉛垂線正垂線正垂線側(cè)垂線側(cè)垂線 另外兩個(gè)投影另外兩個(gè)投影, 在其垂直的投影面上,在其垂直的投影面上,投影有積聚性投影有積聚性。投影特性投影特性: :c (d )cdd c a b a(b)a b e f efe (f )27 一般位置直線一般位置直線投影特性:投影特性: 三個(gè)投影都縮短。三個(gè)投影都縮短。即即: 都不反映空間線段都不反映空間線段的實(shí)長及與三個(gè)投影面的實(shí)長及與三個(gè)投影面夾角的實(shí)大,且與三根夾角的實(shí)大,且與三根投
10、影軸都傾斜。投影軸都傾斜。abb a b a 28二、直線與點(diǎn)的相對位置二、直線與點(diǎn)的相對位置 若點(diǎn)在直線上若點(diǎn)在直線上, 則則點(diǎn)的投影必在直線的同點(diǎn)的投影必在直線的同名投影上。并將線段的名投影上。并將線段的同名投影分割成與空間同名投影分割成與空間相同的比例。即:相同的比例。即: 若點(diǎn)的投影有一個(gè)不若點(diǎn)的投影有一個(gè)不在直線的同名投影上,在直線的同名投影上, 則則該點(diǎn)必不在此直線上。該點(diǎn)必不在此直線上。判別方法判別方法:AC/CB=ac/cb= a c / c b ABCVHbcc b a a定比定理定比定理29點(diǎn)點(diǎn)C不在不在直線直線AB上上例例1:判斷點(diǎn):判斷點(diǎn)C是否在線段是否在線段AB上。上
11、。abca b c c abca b 點(diǎn)點(diǎn)C在直在直線線AB上上30例例2:判斷點(diǎn):判斷點(diǎn)K是否在線段是否在線段AB上。上。a b k 因因k 不在不在a b 上,上, 故點(diǎn)故點(diǎn)K不在不在AB上。上。應(yīng)用定比定理應(yīng)用定比定理abka b k 另一判斷法另一判斷法?31三、兩直線的相對位置三、兩直線的相對位置空間兩直線的相對位置分為:空間兩直線的相對位置分為:平行平行、相交相交、交叉交叉。 兩直線平行兩直線平行投影特性:投影特性: 空間兩直線平空間兩直線平行,則其各行,則其各同名投同名投影影必相互平行,反必相互平行,反之亦然。之亦然。aVHc bcdABCDb d a 32abcdc a b d
12、 例例1:判斷圖中兩條直線是否平行。:判斷圖中兩條直線是否平行。 對于一般位置直對于一般位置直線,只要有兩個(gè)同名線,只要有兩個(gè)同名投影互相平行,空間投影互相平行,空間兩直線就平行。兩直線就平行。AB/CD33b d c a cbadd b a c 對于特殊位置直線,對于特殊位置直線,只有兩個(gè)同名投影互相只有兩個(gè)同名投影互相平行,空間直線不一定平行,空間直線不一定平行。平行。求出側(cè)面投影后可知:求出側(cè)面投影后可知:AB與與CD不平行。不平行。例例2:判斷圖中兩條直線是否平行。:判斷圖中兩條直線是否平行。求出側(cè)面投影求出側(cè)面投影如何判斷?如何判斷?34HVABCDKabcdka b c k d a
13、bcdb a c d kk 兩直線相交兩直線相交判別方法:判別方法: 若空間兩直線相交,若空間兩直線相交,則其同名投影必則其同名投影必相交,且交點(diǎn)的投影必符合空間一點(diǎn)的投相交,且交點(diǎn)的投影必符合空間一點(diǎn)的投影規(guī)律影規(guī)律。交點(diǎn)是兩直交點(diǎn)是兩直線的共有點(diǎn)線的共有點(diǎn)35cabb a c d k kd例:過例:過C點(diǎn)點(diǎn)作水平線作水平線CD與與AB相交。相交。先作正面投影先作正面投影36d b a abcdc1 (2 )3(4 ) 兩直線交叉兩直線交叉投影特性投影特性: 同名投影可能相交,同名投影可能相交,但但 “交點(diǎn)交點(diǎn)”不符合空間不符合空間一個(gè)點(diǎn)的投影規(guī)律一個(gè)點(diǎn)的投影規(guī)律。 “交點(diǎn)交點(diǎn)”是兩直線上是
14、兩直線上的一的一 對對重影點(diǎn)的投影重影點(diǎn)的投影,用其可幫助判斷兩直線用其可幫助判斷兩直線的空間位置。的空間位置。、是面的重影點(diǎn),是面的重影點(diǎn),、是是H面的重影點(diǎn)。面的重影點(diǎn)。為什么?為什么?123 4 兩直線相交嗎?兩直線相交嗎?37 兩直線垂直相交(或垂直交叉)兩直線垂直相交(或垂直交叉)直角的投影特性:直角的投影特性: 若直角有一邊平行于投影面,則它在該投影面若直角有一邊平行于投影面,則它在該投影面上的投影仍為直角。上的投影仍為直角。設(shè)設(shè) 直角邊直角邊BC/H面面因因 BCAB, 同時(shí)同時(shí)BCBb所以所以 BCABba平面平面直線在直線在H面上的面上的投影互相垂直投影互相垂直即即 abc為
15、直角為直角因此因此 bcab故故 bc ABba平面平面又因又因 BCbcABCabcHa c b abc.證明:證明:38d abca b c d例:過例:過C點(diǎn)作直線與點(diǎn)作直線與AB垂直相交。垂直相交。AB為正平線為正平線, 正正面投影反映直角。面投影反映直角。.39 小小 結(jié)結(jié) 點(diǎn)與直線的投影特性,尤其是點(diǎn)與直線的投影特性,尤其是特殊位置特殊位置 直線的投影特性直線的投影特性。 點(diǎn)與直線及兩直線的相對位置的判斷方點(diǎn)與直線及兩直線的相對位置的判斷方 法及投影特性。法及投影特性。 定比定理。定比定理。 直角定理,即兩直線垂直時(shí)的投影特性。直角定理,即兩直線垂直時(shí)的投影特性。重點(diǎn)掌握:重點(diǎn)掌握
16、:40一、點(diǎn)的投影規(guī)律一、點(diǎn)的投影規(guī)律aaZayayaXYYO xa za a aOX軸軸 aax= a az=y=A到到V面的距離面的距離a ax= a ay=z=A到到H面的距離面的距離aay= a az=x=A到到W面的距離面的距離 a a OZ軸軸41二、各種位置直線的投影特性二、各種位置直線的投影特性 一般位置直線一般位置直線三個(gè)投影與各投影軸都傾斜。三個(gè)投影與各投影軸都傾斜。 投影面平行線投影面平行線 在其平行的投影面上的投影反映線段實(shí)長在其平行的投影面上的投影反映線段實(shí)長及與相應(yīng)投影面的夾角。另兩個(gè)投影平行于相及與相應(yīng)投影面的夾角。另兩個(gè)投影平行于相應(yīng)的投影軸。應(yīng)的投影軸。 投影
17、面垂直線投影面垂直線 在其垂直的投影面上的投影積聚為一點(diǎn)。在其垂直的投影面上的投影積聚為一點(diǎn)。另兩個(gè)投影反映實(shí)長且垂直于相應(yīng)的投影軸。另兩個(gè)投影反映實(shí)長且垂直于相應(yīng)的投影軸。42三、直線上的點(diǎn)三、直線上的點(diǎn) 點(diǎn)的投影在直線的同名投影上。點(diǎn)的投影在直線的同名投影上。 點(diǎn)分線段成定比,點(diǎn)的投影必分線段的投影點(diǎn)分線段成定比,點(diǎn)的投影必分線段的投影 成定比成定比定比定理。定比定理。四、兩直線的相對位置四、兩直線的相對位置 平行平行 相交相交 交叉(異面)交叉(異面) 同名投影互相平行。同名投影互相平行。 同名投影相交,交點(diǎn)是兩直線的共有點(diǎn),同名投影相交,交點(diǎn)是兩直線的共有點(diǎn),且符合空間一個(gè)點(diǎn)的投影規(guī)律
18、。且符合空間一個(gè)點(diǎn)的投影規(guī)律。 同名投影可能相交,但同名投影可能相交,但“交點(diǎn)交點(diǎn)”不符合空不符合空間一個(gè)點(diǎn)的投影規(guī)律。間一個(gè)點(diǎn)的投影規(guī)律?!敖稽c(diǎn)交點(diǎn)”是兩直線上一是兩直線上一對重影點(diǎn)的投影。對重影點(diǎn)的投影。43五、相互垂直的兩直線的投影特性五、相互垂直的兩直線的投影特性 兩直線同時(shí)平行于某一投影面時(shí),在該兩直線同時(shí)平行于某一投影面時(shí),在該 投影面上的投影反映直角。投影面上的投影反映直角。 兩直線中有一條平行于某一投影面時(shí),兩直線中有一條平行于某一投影面時(shí), 在該投影面上的投影反映直角。在該投影面上的投影反映直角。 兩直線均為一般位置直線時(shí),兩直線均為一般位置直線時(shí), 在三個(gè)投影面上的投影都不
19、在三個(gè)投影面上的投影都不 反映直角。反映直角。直角定理直角定理442.2.3 2.2.3 平面的投影平面的投影一、一、平面的表示法平面的表示法abca b c 不在同一不在同一直線上的直線上的三個(gè)點(diǎn)三個(gè)點(diǎn)abca b c 直線及直線及線外一線外一點(diǎn)點(diǎn)abca b c dd 兩平行直兩平行直線線abca b c 兩相交兩相交直線直線abca b c 平面平面圖形圖形45二、平面的投影特性二、平面的投影特性平行平行垂直垂直傾斜傾斜投投 影影 特特 性性 平面平行投影面平面平行投影面-投影就把實(shí)形現(xiàn)投影就把實(shí)形現(xiàn) 平面垂直投影面平面垂直投影面-投影積聚成直線投影積聚成直線 平面傾斜投影面平面傾斜投影
20、面-投影類似原平面投影類似原平面實(shí)形性實(shí)形性類似性類似性積聚性積聚性 平面對一個(gè)投影面的投影特性平面對一個(gè)投影面的投影特性46 平面在三投影面體系中的投影特性平面在三投影面體系中的投影特性平面對于三投影面的位置可分為三類平面對于三投影面的位置可分為三類:投影面垂直面投影面垂直面 投影面平行面投影面平行面一般位置平面一般位置平面特殊位置平面特殊位置平面垂直于某一投影面,垂直于某一投影面,傾斜于另兩個(gè)投影面傾斜于另兩個(gè)投影面平行于某一投影面,平行于某一投影面,垂直于另兩個(gè)投影面垂直于另兩個(gè)投影面與三個(gè)投影面都傾斜與三個(gè)投影面都傾斜 正垂面正垂面 側(cè)垂面?zhèn)却姑?鉛垂面鉛垂面 正平面正平面 側(cè)平面?zhèn)绕?/p>
21、面 水平面水平面47abca c b c b a 投影面垂直面投影面垂直面類似性類似性類似性類似性積聚性積聚性鉛垂面鉛垂面投影特性:投影特性: 在它垂直的投影面上的投影積聚成直在它垂直的投影面上的投影積聚成直線。該直線與投影軸的夾角反映空間平面線。該直線與投影軸的夾角反映空間平面與另外兩投影面夾角的大小。與另外兩投影面夾角的大小。 另外兩個(gè)投影面上的投影有類似性。另外兩個(gè)投影面上的投影有類似性。為什么?為什么?是什么位置是什么位置的平面?的平面?48a b c a b c abc 投影面平行面投影面平行面積聚性積聚性積聚性積聚性實(shí)形性實(shí)形性水平面水平面投影特性:投影特性:在它所平行的投影面上的
22、投影反映實(shí)形。在它所平行的投影面上的投影反映實(shí)形。 另兩個(gè)投影面上的投影分別積聚成與相應(yīng)另兩個(gè)投影面上的投影分別積聚成與相應(yīng)的投影軸平行的直線。的投影軸平行的直線。49a b c a c b abc 一般位置平面一般位置平面三個(gè)投影都類似。三個(gè)投影都類似。投影特性:投影特性:50三、平面上的直線和點(diǎn)三、平面上的直線和點(diǎn)判斷直線在平面判斷直線在平面內(nèi)的方法內(nèi)的方法 定定 理理 一一若一直線過平面若一直線過平面上的兩點(diǎn),則此上的兩點(diǎn),則此直線必在該平面直線必在該平面內(nèi)。內(nèi)。定定 理理 二二若一直線過平面上的若一直線過平面上的一點(diǎn),且平行于該平一點(diǎn),且平行于該平面上的另一直線,則面上的另一直線,則此
23、直線在該平面內(nèi)。此直線在該平面內(nèi)。 平面上取任意直線平面上取任意直線51abcb c a abcb c a d mnn m d例例1:已知平面由直線:已知平面由直線AB、AC所確定,試所確定,試 在平面內(nèi)任作一條直線。在平面內(nèi)任作一條直線。解法一解法一解法二解法二根據(jù)定理二根據(jù)定理二根據(jù)定理一根據(jù)定理一有多少解?有多少解?有無數(shù)解。有無數(shù)解。52例例2:在平面:在平面ABC內(nèi)作一條水平線,使其到內(nèi)作一條水平線,使其到 H面的距面的距 離為離為10mm。n m nm10c a b cab 唯一解!唯一解!有多少解?有多少解?53 平面上取點(diǎn)平面上取點(diǎn) 先找出過此點(diǎn)而又在平面內(nèi)的一條直線作先找出過
24、此點(diǎn)而又在平面內(nèi)的一條直線作為輔助線,然后再在該直線上確定點(diǎn)的位置。為輔助線,然后再在該直線上確定點(diǎn)的位置。例例1:已知:已知K點(diǎn)在平面點(diǎn)在平面ABC上,求上,求K點(diǎn)的水平投影。點(diǎn)的水平投影。bacc a k b k 面上取點(diǎn)的方法:面上取點(diǎn)的方法:首先面上取線首先面上取線abcab k c d kd利用平面的積聚性求解利用平面的積聚性求解通過在面內(nèi)作輔助線求解通過在面內(nèi)作輔助線求解54bckada d b c ada d b c k bc例例2:已知:已知AC為正平線,補(bǔ)全平行四邊形為正平線,補(bǔ)全平行四邊形 ABCD的水平投影。的水平投影。解法一解法一解法二解法二552.3 幾何元素的相對位
25、置幾何元素的相對位置相對位置包括相對位置包括平行平行、相交相交和和垂直。垂直。一、平行問題一、平行問題 直線與平面平行直線與平面平行 平面與平面平行平面與平面平行包括包括 直線與平面平行直線與平面平行定理:定理: 若一直線平行于平面上的某一直若一直線平行于平面上的某一直線,則該直線與此平面必相互平行。線,則該直線與此平面必相互平行。56n a c b m abcmn例例1:過:過M點(diǎn)作直線點(diǎn)作直線MN平行于平面平行于平面ABC。有無數(shù)解有無數(shù)解有多少解?有多少解?57正平線正平線例例2:過:過M點(diǎn)作直線點(diǎn)作直線MN平行于平行于V面和平面面和平面 ABC。c b a m abcmn唯一解唯一解n
26、 58 兩平面平行兩平面平行 若一平面上的若一平面上的兩相兩相交直線交直線對應(yīng)平行于另對應(yīng)平行于另一平面上的一平面上的兩相交直兩相交直線線,則這兩平面相互,則這兩平面相互平行。平行。 若兩若兩投影面垂直面投影面垂直面相互平行,則它們相互平行,則它們具具有積聚性有積聚性的那組投影的那組投影必相互平行。必相互平行。f h abcdefha b c d e c f b d e a abcdef59二、相交問題二、相交問題直線與平面相交直線與平面相交平面與平面相交平面與平面相交 直線與平面相交直線與平面相交 直線與平面相交,其直線與平面相交,其交點(diǎn)是直線與平交點(diǎn)是直線與平面的共有點(diǎn)。面的共有點(diǎn)。要討論
27、的問題:要討論的問題: 求求直線與平面的直線與平面的交點(diǎn)。交點(diǎn)。 判別兩者之間的相互遮擋關(guān)系,即判別兩者之間的相互遮擋關(guān)系,即判別可判別可 見性。見性。 我們只討論直線與平面中至少有一個(gè)我們只討論直線與平面中至少有一個(gè)處于特殊位置的情況。處于特殊位置的情況。60abcmnc n b a m 平面為特殊位置平面為特殊位置例:求直線例:求直線MN與平面與平面ABC的交點(diǎn)的交點(diǎn)K并判別可見性。并判別可見性??臻g及投影分析空間及投影分析 平面平面ABC是一鉛垂面,是一鉛垂面,其水平投影積聚成一條直其水平投影積聚成一條直線,該直線與線,該直線與mn的交點(diǎn)即的交點(diǎn)即為為K點(diǎn)的水平投影。點(diǎn)的水平投影。 求交
28、點(diǎn)求交點(diǎn) 判別可見性判別可見性由水平投影可知,由水平投影可知,KN段在平面前,故正面投段在平面前,故正面投影上影上k n 為可見。為可見。還可通過重影點(diǎn)判別可見性。還可通過重影點(diǎn)判別可見性。k 1 (2 )作作 圖圖k2161km(n)bm n c b a ac 直線為特殊位置直線為特殊位置空間及投影分析空間及投影分析 直線直線MN為鉛垂線,其為鉛垂線,其水平投影積聚成一個(gè)點(diǎn),水平投影積聚成一個(gè)點(diǎn),故交點(diǎn)故交點(diǎn)K的水平投影也積聚的水平投影也積聚在該點(diǎn)上。在該點(diǎn)上。 求交點(diǎn)求交點(diǎn) 判別可見性判別可見性 點(diǎn)點(diǎn)位于平面上,在位于平面上,在前;點(diǎn)前;點(diǎn)位于位于MN上,在上,在后。故后。故k 2 為不可
29、見。為不可見。1 (2 )k 21作圖作圖用面上取點(diǎn)法用面上取點(diǎn)法62 兩平面相交兩平面相交 兩平面相交其交線為直線,兩平面相交其交線為直線,交線是兩平交線是兩平面的共有線,面的共有線,同時(shí)同時(shí)交線上的點(diǎn)都是兩平面的交線上的點(diǎn)都是兩平面的共有點(diǎn)。共有點(diǎn)。要討論的問題:要討論的問題: 求求兩平面的兩平面的交線交線方法:方法: 確定兩平面的確定兩平面的兩個(gè)共有點(diǎn)。兩個(gè)共有點(diǎn)。 確定確定一個(gè)共有點(diǎn)及交線的方向。一個(gè)共有點(diǎn)及交線的方向。 只討論兩平面中至少有一個(gè)處于特只討論兩平面中至少有一個(gè)處于特殊位置的情況。殊位置的情況。 判別兩平面之間的相互遮擋關(guān)系,即:判別兩平面之間的相互遮擋關(guān)系,即: 判別可
30、見性。判別可見性。63可通過正面投影可通過正面投影直觀地進(jìn)行判別。直觀地進(jìn)行判別。abcdefc f db e a m (n )空間及投影分析空間及投影分析 平面平面ABC與與DEF都都為為正垂面正垂面,它們的正面投,它們的正面投影都積聚成直線。影都積聚成直線。交線必交線必為一條正垂線為一條正垂線,只要求得只要求得交線上的一個(gè)點(diǎn)便可作出交線上的一個(gè)點(diǎn)便可作出交線的投影。交線的投影。 求交線求交線 判別可見性判別可見性作作 圖圖 從正面投影上可看出,從正面投影上可看出,在交線左側(cè),平面在交線左側(cè),平面ABC在上,其水平投影可見。在上,其水平投影可見。nm能否不用重能否不用重影點(diǎn)判別?影點(diǎn)判別?能
31、能!如何判別?如何判別?例:求兩平面的交線例:求兩平面的交線MN并判別可見性。并判別可見性。64b c f h a e abcefh1(2)空間及投影分析空間及投影分析 平面平面EFH是一水平面,它的是一水平面,它的正面投影有積聚性。正面投影有積聚性。a b 與與e f 的交點(diǎn)的交點(diǎn)m 、 b c 與與f h 的交點(diǎn)的交點(diǎn)n 即為兩個(gè)共有點(diǎn)的正面投影,即為兩個(gè)共有點(diǎn)的正面投影,故故m n 即即MN的正面投影的正面投影。 求交線求交線 判別可見性判別可見性點(diǎn)點(diǎn)在在FH上,點(diǎn)上,點(diǎn)在在BC上,上,點(diǎn)點(diǎn)在上,點(diǎn)在上,點(diǎn)在下,故在下,故fh可見,可見,n2不可見。不可見。作作 圖圖mn 2 nm 1
32、65c d e f a b abcdef投影分析投影分析 N點(diǎn)的水平投影點(diǎn)的水平投影n位于位于def的外面,說的外面,說明點(diǎn)明點(diǎn)N位于位于DEF所確所確定的平面內(nèi),但不位定的平面內(nèi),但不位于于DEF這個(gè)圖形內(nèi)。這個(gè)圖形內(nèi)。 所以所以ABC和和DEF的交線應(yīng)為的交線應(yīng)為MK。nn m kmk 互交互交66 小小 結(jié)結(jié)重點(diǎn)掌握:重點(diǎn)掌握:二、如何在平面上確定直線和點(diǎn)。二、如何在平面上確定直線和點(diǎn)。三、兩平面平行的條件一定是分別位于兩平面三、兩平面平行的條件一定是分別位于兩平面 內(nèi)的內(nèi)的兩組相交直線對應(yīng)平行。兩組相交直線對應(yīng)平行。四、直線與平面的交點(diǎn)及平面與平面的交線是四、直線與平面的交點(diǎn)及平面與平
33、面的交線是 兩者的共有點(diǎn)或共有線。兩者的共有點(diǎn)或共有線。解題思路:解題思路:空間及投影分析空間及投影分析 目的是找出交點(diǎn)或交線的已知投影。目的是找出交點(diǎn)或交線的已知投影。判別可見性判別可見性 尤其是尤其是如何利用重影點(diǎn)判別。如何利用重影點(diǎn)判別。一、平面的投影特性,一、平面的投影特性,尤其是特殊位置平面的尤其是特殊位置平面的 投影特性。投影特性。67要要 點(diǎn)點(diǎn)一、各種位置平面的投影特性一、各種位置平面的投影特性 一般位置平面一般位置平面 投影面垂直面投影面垂直面 投影面平行面投影面平行面三個(gè)投影為邊數(shù)相等的類似多邊形三個(gè)投影為邊數(shù)相等的類似多邊形類似性類似性。在其垂直的投影面上的投影積聚成直線在
34、其垂直的投影面上的投影積聚成直線 積聚性積聚性。另外兩個(gè)投影類似。另外兩個(gè)投影類似。 在其平行的投影面上的投影反映實(shí)形在其平行的投影面上的投影反映實(shí)形 實(shí)形性實(shí)形性。 另外兩個(gè)投影積聚為直線。另外兩個(gè)投影積聚為直線。 68二、平面上的點(diǎn)與直線二、平面上的點(diǎn)與直線 平面上的點(diǎn)平面上的點(diǎn)一定位于平面內(nèi)的某條直線上一定位于平面內(nèi)的某條直線上 平面上的直線平面上的直線 過平面上的兩個(gè)點(diǎn)。過平面上的兩個(gè)點(diǎn)。 過平面上的一點(diǎn)并平行于該平面上的某條直線。過平面上的一點(diǎn)并平行于該平面上的某條直線。三、平行問題三、平行問題 直線與平面平行直線與平面平行 直線平行于平面內(nèi)的一條直線。直線平行于平面內(nèi)的一條直線。
35、兩平面平行兩平面平行 必須是一個(gè)平面上的一對相交直線對應(yīng)平行必須是一個(gè)平面上的一對相交直線對應(yīng)平行 于另一個(gè)平面上的一對相交直線。于另一個(gè)平面上的一對相交直線。69四、相交問題四、相交問題 求直線與平面的交點(diǎn)的方法求直線與平面的交點(diǎn)的方法 一般位置直線與特殊位置平面求交點(diǎn),利用一般位置直線與特殊位置平面求交點(diǎn),利用 交點(diǎn)的共有性和平面的積聚性直接求解。交點(diǎn)的共有性和平面的積聚性直接求解。 投影面垂直線與一般位置平面求交點(diǎn),利用投影面垂直線與一般位置平面求交點(diǎn),利用 交點(diǎn)的共有性和直線的積聚性,采取平面上交點(diǎn)的共有性和直線的積聚性,采取平面上 取點(diǎn)的方法求解。取點(diǎn)的方法求解。 求兩平面的交線的方
36、法求兩平面的交線的方法 兩特殊位置平面相交,分析交線的空間位置,兩特殊位置平面相交,分析交線的空間位置, 有時(shí)可找出兩平面的一個(gè)共有點(diǎn),根據(jù)交線有時(shí)可找出兩平面的一個(gè)共有點(diǎn),根據(jù)交線 的投影特性畫出交線的投影。的投影特性畫出交線的投影。 一般位置平面與特殊位置平面相交,可利用一般位置平面與特殊位置平面相交,可利用 特殊位置平面的積聚性找出兩平面的兩個(gè)共特殊位置平面的積聚性找出兩平面的兩個(gè)共 有點(diǎn),求出交線。有點(diǎn),求出交線。702.4 2.4 換面法換面法一、問題的提出一、問題的提出 如何求一般位置直線的實(shí)長?如何求一般位置直線的實(shí)長? 如何求一般位置平面的真實(shí)大小?如何求一般位置平面的真實(shí)大小
37、? 換換 面面 法:法: 物體本身在空間的位置不動(dòng),而用某物體本身在空間的位置不動(dòng),而用某一新投影面(輔助投影面)代替原有投影一新投影面(輔助投影面)代替原有投影面,使面,使物體相對新的投影面處于解題所需物體相對新的投影面處于解題所需要的有利位置要的有利位置,然后將物體向新投影面進(jìn),然后將物體向新投影面進(jìn)行投射。行投射。解決方法:更換投影面。解決方法:更換投影面。71VHAB a b ab二、新投影面的選擇原則二、新投影面的選擇原則1. 新投影面必須對空間物體處于新投影面必須對空間物體處于最有利的解最有利的解 題位置。題位置。 平行于新的投影面平行于新的投影面 垂直于新的投影面垂直于新的投影面
38、2. 新投影面必須新投影面必須垂直于垂直于某某一保留的原投影面,一保留的原投影面, 以構(gòu)成一個(gè)相互垂直的兩投影面的新體系。以構(gòu)成一個(gè)相互垂直的兩投影面的新體系。Pa1b172VHA a a axX 更換一次投影面更換一次投影面 舊投影體系舊投影體系 X VH 新投影體系新投影體系P1HX1 A點(diǎn)的兩個(gè)投影:點(diǎn)的兩個(gè)投影:a, a A點(diǎn)的兩個(gè)投影:點(diǎn)的兩個(gè)投影:a,a1 新投影體系的建立新投影體系的建立三、點(diǎn)的投影變換規(guī)律三、點(diǎn)的投影變換規(guī)律X1P1a1ax1 VHXP1HX1 a aa1axax1.73ax1 VHXP1HX1 a aa1VHA a axXX1P1a1ax1 新舊投影之間的關(guān)系
39、新舊投影之間的關(guān)系 aa1 X1 a1ax1 = a ax 點(diǎn)的新投影到新投影軸的距離等于被代替的投影點(diǎn)的新投影到新投影軸的距離等于被代替的投影 到原投影軸的距離。到原投影軸的距離。axa 一般規(guī)律:一般規(guī)律: 點(diǎn)的新投影和與它有關(guān)的原投影的連線,必垂直點(diǎn)的新投影和與它有關(guān)的原投影的連線,必垂直 于新投影軸。于新投影軸。.74 XVHaa ax更換更換H面面 求新投影的作圖方法求新投影的作圖方法 VHXP1HX1 由點(diǎn)的不變投影向新投影軸作垂線,由點(diǎn)的不變投影向新投影軸作垂線,并在垂線上量取一段距離,使這段距離等并在垂線上量取一段距離,使這段距離等于被代替的投影到原投影軸的距離。于被代替的投影
40、到原投影軸的距離。aa X1P1V a1axax1ax1更換更換V面面a1作圖規(guī)律:作圖規(guī)律:.75 更換兩次投影面更換兩次投影面先把先把V面換成平面面換成平面P1, P1 H,得到中間新投影體系,得到中間新投影體系:P1HX1 再把再把H面換成平面面換成平面P2, P2 P1,得到新投影體系,得到新投影體系: X2 P1 P2 新投影體系的建立新投影體系的建立按次序更換按次序更換AaVH a axXX1P1a1ax1P2X2ax2a2 76ax2 a aXVH 求新投影的作圖方法求新投影的作圖方法a2X1HP1X2P1P2 作圖規(guī)律作圖規(guī)律 a2a1 X2 軸軸 a2ax2 = aax1a1
41、 axax1 .77VHAB a b ab四、換面法的四個(gè)基本問題四、換面法的四個(gè)基本問題1. 把一般位置直線變換成投影面平行線把一般位置直線變換成投影面平行線用用P1面代替面代替V面,在面,在P1/H投影體系中,投影體系中,AB/P1。X1HP1P1a1b1空間分析空間分析: 換換H面行嗎?面行嗎?不行!不行!作圖:作圖:例:求直線例:求直線AB的實(shí)長及與的實(shí)長及與H面的夾角。面的夾角。 a b abXVH新投影軸的位置?新投影軸的位置?a1b1與與ab平行。平行。 .78a1b1VH a aXB b bA2. 把一般位置直線變換成投影面垂直線把一般位置直線變換成投影面垂直線空間分析:空間分
42、析:a b abXVHX1H1P1P1P2X2作圖:作圖:X1P1a1b1X2P2二次換面把投影面平行線變成投影面垂直線二次換面把投影面平行線變成投影面垂直線。X2軸的位置?軸的位置?a2 b2ax2a2 b2 .與與a1b1垂直垂直一次換面把直線變成投影面平行線;一次換面把直線變成投影面平行線;79 一般位置直線變換一般位置直線變換成投影面垂直線,需經(jīng)成投影面垂直線,需經(jīng)幾次變換?幾次變換? a b c abcdVHABCDX d 3. 把一般位置平面變換成投影面垂直面把一般位置平面變換成投影面垂直面 如果把平面內(nèi)的一條直線變換成新投影面的垂如果把平面內(nèi)的一條直線變換成新投影面的垂直線,那么
43、該平面則變換成新投影面的垂直面。直線,那么該平面則變換成新投影面的垂直面。 P1X1c1b1 a1 d1空間分析:空間分析: 在平面內(nèi)在平面內(nèi)取一條取一條投影面平行線投影面平行線,經(jīng)一,經(jīng)一次換面后變換成新投次換面后變換成新投影面的垂直線,則該影面的垂直線,則該平面變成新投影面的平面變成新投影面的垂直面。垂直面。作圖方法:作圖方法:兩平面垂直需滿足什么條件?兩平面垂直需滿足什么條件?能否只進(jìn)行一次變換?能否只進(jìn)行一次變換? 思考:思考:若變換若變換H面,需在面面,需在面內(nèi)取什么位置直線?內(nèi)取什么位置直線?正平線!正平線!80 a b c acbXVH例:把例:把三角形三角形ABC變變換換成投影
44、面垂直面。成投影面垂直面。HP1X1作作 圖圖 過過 程:程: 在平面內(nèi)取一條水平在平面內(nèi)取一條水平 線線AD。d d 將將AD變換成新投影變換成新投影 面的垂直線。面的垂直線。d1a1 d1c1 反映平面對哪反映平面對哪個(gè)投影面的夾角?個(gè)投影面的夾角?.81a1 b1需經(jīng)幾次變換?需經(jīng)幾次變換?一次換面一次換面, 把一般位置平面變換成新投影面的垂直面;把一般位置平面變換成新投影面的垂直面;二次換面,再變換成新投影面的平行面。二次換面,再變換成新投影面的平行面。X2P1P24. 把一般位置平面變換成投影面平行面把一般位置平面變換成投影面平行面ab a c b XVHc作作 圖:圖:AB是水平是
45、水平線線空間分析:空間分析:a2c2b2c1X2軸的位置?軸的位置?平面的實(shí)形平面的實(shí)形.X1HP1.與其平行與其平行82b1 距離距離dd1X1HP1X2P1P2c2 d 例例1:求點(diǎn):求點(diǎn)C到直線到直線AB的距離,并求垂足的距離,并求垂足D。c c b a abXVH 五、換面法的應(yīng)用五、換面法的應(yīng)用 如下圖:當(dāng)直線如下圖:當(dāng)直線AB垂直于投影面時(shí),垂直于投影面時(shí),CD平平行于投影面,其投影反映行于投影面,其投影反映實(shí)長。實(shí)長。APBDCca b d作圖作圖: 求求C點(diǎn)到直線點(diǎn)到直線AB的距離,的距離,就是求垂線就是求垂線CD的實(shí)長。的實(shí)長??臻g及投影分析:空間及投影分析:c1 a1 a2
46、 b2 d2 過過c1作線平行于作線平行于x2軸。軸。.如何確定如何確定d1點(diǎn)的位置?點(diǎn)的位置?83b a abcdc 例例2:已知兩交叉直線:已知兩交叉直線AB和和CD的公垂線的長度的公垂線的長度 為為MN, 且且AB為水平線,求為水平線,求CD及及MN的投影。的投影。MNm d a1b1m1n1c1d1n空間及投影分析:空間及投影分析:VHXHP1X1圓半徑圓半徑=MNn m 當(dāng)直線當(dāng)直線AB垂直于投影垂直于投影面時(shí),面時(shí),MN平行于投影面,平行于投影面,這時(shí)它的投影這時(shí)它的投影m1n1=MN,且且m1n1c1d1。P1ACDNMc1d1a1m1b1n1B作圖:作圖:請注意各點(diǎn)的投請注意各
47、點(diǎn)的投影如何返回?影如何返回?求求m點(diǎn)是難點(diǎn)。點(diǎn)是難點(diǎn)。.84空間及投影分析空間及投影分析:AB與與CD都平行于投影面時(shí),其投影都平行于投影面時(shí),其投影的夾角才反映實(shí)大(的夾角才反映實(shí)大(60),因此需將),因此需將AB與與C點(diǎn)所確定的點(diǎn)所確定的平面變換成投影面平行面。平面變換成投影面平行面。例例3: 過過C點(diǎn)作直線點(diǎn)作直線CD與與AB相交成相交成60角。角。 d X1HP1X1P1P2ab a c b XVHc作作 圖:圖:c2c1a1 b1a2d2db2 幾個(gè)解?幾個(gè)解?兩個(gè)解!兩個(gè)解! 已知點(diǎn)已知點(diǎn)C是等邊三角形的頂點(diǎn),另兩個(gè)頂點(diǎn)在直線是等邊三角形的頂點(diǎn),另兩個(gè)頂點(diǎn)在直線AB上,上,求等
48、邊三角形的投影。求等邊三角形的投影。思考:思考:如何解?如何解?解法相同!解法相同!60D點(diǎn)的投影點(diǎn)的投影如何返回?如何返回?.85P2P1X2H P1X1c d b a dacbd1c1a1d2b1c2a2 b2VHX例例4:求平面:求平面ABC和和ABD的兩面角。的兩面角??臻g及投影分析空間及投影分析: 由幾何定理知:兩面角為兩平面同時(shí)與第三平面垂直相交由幾何定理知:兩面角為兩平面同時(shí)與第三平面垂直相交時(shí)所得兩交線之間的夾角。時(shí)所得兩交線之間的夾角。 在投影圖中在投影圖中, 兩平面的交線垂直于投影面時(shí),則兩平面兩平面的交線垂直于投影面時(shí),則兩平面垂直于該投影面,它們的投影積聚成直線,直線間
49、的夾角為垂直于該投影面,它們的投影積聚成直線,直線間的夾角為所求。所求。.86 小小 結(jié)結(jié) 本章主要介紹了投影變換的一種常用方法本章主要介紹了投影變換的一種常用方法 換面法換面法。一、一、 換面法就是換面法就是改變投影面的位置改變投影面的位置,使它與所給物,使它與所給物 體或其幾何元素處于體或其幾何元素處于解題所需的特殊位置解題所需的特殊位置。二、二、 換面法的關(guān)鍵是要注意換面法的關(guān)鍵是要注意新投影面的選擇條件新投影面的選擇條件, 即必須使即必須使新投影面與某一原投面保持垂直關(guān)系新投影面與某一原投面保持垂直關(guān)系, 同時(shí)又有利于解題需要,這樣才能使正投影規(guī)同時(shí)又有利于解題需要,這樣才能使正投影規(guī)
50、 律繼續(xù)有效。律繼續(xù)有效。三、三、點(diǎn)的變換規(guī)律是換面法的作圖基礎(chǔ)點(diǎn)的變換規(guī)律是換面法的作圖基礎(chǔ),四個(gè)基本,四個(gè)基本 問題是解題的基本作圖方法,必需熟練掌握。問題是解題的基本作圖方法,必需熟練掌握。87換面法的四個(gè)基本問題:換面法的四個(gè)基本問題: 2. 把一般位置直線變成投影面垂直線把一般位置直線變成投影面垂直線1. 把一般位置直線變成投影面平行線把一般位置直線變成投影面平行線3. 把一般位置平面變成投影面垂直面把一般位置平面變成投影面垂直面4. 把一般位置平面變成投影面平行面把一般位置平面變成投影面平行面變換一次投影面變換一次投影面變換一次投影面變換一次投影面變換兩次投影面變換兩次投影面變換兩
51、次投影面變換兩次投影面需先在面內(nèi)作一條投影面平行線需先在面內(nèi)作一條投影面平行線88四、解題時(shí)一般要注意下面幾個(gè)問題:四、解題時(shí)一般要注意下面幾個(gè)問題: 分析已給條件的空間情況,弄清原始條件中分析已給條件的空間情況,弄清原始條件中 物體與原投影面的相對位置物體與原投影面的相對位置,并把這些條件,并把這些條件 抽象成幾何元素(點(diǎn)、線、面等)。抽象成幾何元素(點(diǎn)、線、面等)。 根據(jù)要求得到的結(jié)果,確定出有關(guān)幾何元根據(jù)要求得到的結(jié)果,確定出有關(guān)幾何元 素素對新投影面應(yīng)處于什么樣的特殊位置對新投影面應(yīng)處于什么樣的特殊位置(垂(垂 直或平行),據(jù)此選擇正確的解題思路與方直或平行),據(jù)此選擇正確的解題思路與
52、方 法。法。 在具體作圖過程中,要注意新投影與原投影在具體作圖過程中,要注意新投影與原投影 在變換前后的關(guān)系,在變換前后的關(guān)系, 既要在新投影體系中正既要在新投影體系中正 確無誤地求得結(jié)果,又能將結(jié)果確無誤地求得結(jié)果,又能將結(jié)果返回到原投返回到原投 影體系中去。影體系中去。89VWH2.5.1 2.5.1 體的投影及三視圖體的投影及三視圖一、體的投影一、體的投影 體的投影,實(shí)質(zhì)上是構(gòu)成該體的所體的投影,實(shí)質(zhì)上是構(gòu)成該體的所有表面的投影總和。有表面的投影總和。90二、三面投影與三視圖二、三面投影與三視圖1.1.視圖的概念視圖的概念主視圖主視圖(front view) 體的正面投影體的正面投影俯視
53、圖俯視圖(vertical view) 體的水平投影體的水平投影左視圖左視圖(left view) 體的側(cè)面投影體的側(cè)面投影2.2.三視圖之間的度量對應(yīng)關(guān)系三視圖之間的度量對應(yīng)關(guān)系三等關(guān)系三等關(guān)系主視俯視長相等且對正主視俯視長相等且對正主視左視高相等且平齊主視左視高相等且平齊俯視左視寬相等且對應(yīng)俯視左視寬相等且對應(yīng)長長高高寬寬寬寬長對正長對正寬相等寬相等高平齊高平齊 視圖就是將物體向投視圖就是將物體向投影面投射所得的圖形。影面投射所得的圖形。913.3.三視圖之間的方位對應(yīng)關(guān)系三視圖之間的方位對應(yīng)關(guān)系 主視圖反映:上、下主視圖反映:上、下 、左、右、左、右 俯視圖反映:前、后俯視圖反映:前、后
54、 、左、右、左、右 左視圖反映:上、下左視圖反映:上、下 、前、后、前、后上上下下左左右右后后前前上上下下前前后后左左右右922.5.22.5.2基本體的形成及其三視圖基本體的形成及其三視圖 常見的基本幾何體常見的基本幾何體平面基本體平面基本體曲面基本體曲面基本體93點(diǎn)的可見性規(guī)定:點(diǎn)的可見性規(guī)定: 若點(diǎn)所在的平面的投影若點(diǎn)所在的平面的投影可見,點(diǎn)的投影也可見;若可見,點(diǎn)的投影也可見;若平面的投影積聚成直線,點(diǎn)平面的投影積聚成直線,點(diǎn)的投影也可見。的投影也可見。 由于棱柱的表面都是平由于棱柱的表面都是平面,所以在棱柱的表面上取面,所以在棱柱的表面上取點(diǎn)與在平面上取點(diǎn)的方法相點(diǎn)與在平面上取點(diǎn)的方
55、法相同。同。一、平面基本體一、平面基本體1.1.棱柱棱柱 棱柱的三視圖棱柱的三視圖 棱柱面上取點(diǎn)棱柱面上取點(diǎn) a a a (b ) b 棱柱的組成棱柱的組成 b 由由兩個(gè)底面和幾個(gè)側(cè)棱面兩個(gè)底面和幾個(gè)側(cè)棱面組成。側(cè)棱面與側(cè)棱面的交線組成。側(cè)棱面與側(cè)棱面的交線叫側(cè)棱線,叫側(cè)棱線,側(cè)棱線相互平行側(cè)棱線相互平行。 在圖示位置時(shí),六棱柱的兩在圖示位置時(shí),六棱柱的兩底面為水平面,在俯視圖中反映底面為水平面,在俯視圖中反映實(shí)形。前后兩側(cè)棱面是正平面,實(shí)形。前后兩側(cè)棱面是正平面,其余四個(gè)側(cè)棱面是鉛垂面,它們其余四個(gè)側(cè)棱面是鉛垂面,它們的水平投影都積聚成直線,與六的水平投影都積聚成直線,與六邊形的邊重合。邊形
56、的邊重合。94( ) s s 2.2.棱錐棱錐 棱錐的三視圖棱錐的三視圖 在棱錐面上取點(diǎn)在棱錐面上取點(diǎn) k k k b a c abc a (c )b s n n 棱錐的組成棱錐的組成 n 由由一個(gè)底面和幾個(gè)一個(gè)底面和幾個(gè)側(cè)棱面?zhèn)壤饷娼M成。組成。側(cè)棱線交側(cè)棱線交于有限遠(yuǎn)的一點(diǎn)于有限遠(yuǎn)的一點(diǎn)錐錐頂頂。同樣采用平面上取點(diǎn)法。同樣采用平面上取點(diǎn)法。 棱錐處于圖示位置時(shí),棱錐處于圖示位置時(shí),其底面其底面ABC是水平面,在是水平面,在俯視圖上反映實(shí)形。側(cè)棱俯視圖上反映實(shí)形。側(cè)棱面面SAC為側(cè)垂面,另兩個(gè)為側(cè)垂面,另兩個(gè)側(cè)棱面為一般位置平。側(cè)棱面為一般位置平。95 圓柱面的俯視圖積聚成一圓柱面的俯視圖積聚
57、成一個(gè)圓,在另兩個(gè)視圖上分別以個(gè)圓,在另兩個(gè)視圖上分別以兩個(gè)方向的輪廓素線的投影表兩個(gè)方向的輪廓素線的投影表示。示。二、回轉(zhuǎn)體二、回轉(zhuǎn)體1.1.圓柱體圓柱體 圓柱體的三視圖圓柱體的三視圖 輪廓線素線的投影與曲面的輪廓線素線的投影與曲面的 可見性的判斷可見性的判斷 圓柱面上取點(diǎn)圓柱面上取點(diǎn) a a a 圓柱面上與軸線平行的任圓柱面上與軸線平行的任一直線稱為圓柱面的一直線稱為圓柱面的素線素線。 圓柱體的組成圓柱體的組成由由圓柱面和兩底面圓柱面和兩底面組成。組成。 圓柱面是由直線圓柱面是由直線AA1繞與繞與它平行的軸線它平行的軸線OO1旋轉(zhuǎn)而成。旋轉(zhuǎn)而成。A1AOO1 直線直線AA1稱為母線。稱為母
58、線。 利用投影利用投影的積聚性的積聚性96 在圖示位置,俯視圖為一在圖示位置,俯視圖為一圓。另兩個(gè)視圖為等邊三圓。另兩個(gè)視圖為等邊三角形,三角形的底邊為圓角形,三角形的底邊為圓錐底面的投影,兩腰分別錐底面的投影,兩腰分別為圓錐面不同方向的兩條為圓錐面不同方向的兩條輪廓素線的投影。輪廓素線的投影。 圓錐面是由直線圓錐面是由直線SA繞與繞與它相交的軸線它相交的軸線OO1旋轉(zhuǎn)而旋轉(zhuǎn)而成。成。 S稱為稱為錐頂錐頂,直線直線SA稱稱為母線為母線。圓錐面上過錐頂。圓錐面上過錐頂?shù)娜我恢本€稱為圓錐面的的任一直線稱為圓錐面的素線素線。O1O 圓錐體的組成圓錐體的組成 s s 2.2.圓錐體圓錐體 圓錐體的三視
59、圖圓錐體的三視圖 輪廓線素線的投影與輪廓線素線的投影與 曲面的可見性的判斷曲面的可見性的判斷 圓錐面上取點(diǎn)圓錐面上取點(diǎn) k 輔助直線法輔助直線法輔助圓法輔助圓法 (n )sn k(n ) k 由由圓錐面和底面圓錐面和底面組成。組成。SA如何在圓錐面如何在圓錐面上作直線?上作直線?過錐頂作過錐頂作一條素線。一條素線。圓的半徑?圓的半徑?97 三個(gè)視圖分別為三三個(gè)視圖分別為三個(gè)和圓球的直徑相等的個(gè)和圓球的直徑相等的圓,它們分別是圓球三圓,它們分別是圓球三個(gè)方向輪廓線的投影。個(gè)方向輪廓線的投影。3.3.圓球圓球 圓母線以它的直圓母線以它的直徑為軸旋轉(zhuǎn)而成。徑為軸旋轉(zhuǎn)而成。 圓球的三視圖圓球的三視圖
60、輪廓線的投影與曲輪廓線的投影與曲 面可見性的判斷面可見性的判斷 圓球面上取點(diǎn)圓球面上取點(diǎn) k 輔助圓法輔助圓法k k 圓球的形成圓球的形成圓的半徑?圓的半徑?982.6 2.6 平面體及回轉(zhuǎn)體的截切平面體及回轉(zhuǎn)體的截切截切:截切: 用一個(gè)平面與立體相交,截去立體的一用一個(gè)平面與立體相交,截去立體的一部分。部分。 截平面截平面 用以截切物體的平面用以截切物體的平面。 截交線截交線 截平面與物體表面的交線。截平面與物體表面的交線。 截?cái)嗝娼財(cái)嗝?因截平面的截切,在物體上形因截平面的截切,在物體上形 成的平面。成的平面。討論的問題:截交線的分析和作圖討論的問題:截交線的分析和作圖 。992.6.1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四年度學(xué)校學(xué)生宿舍消防安全管理合同范本3篇
- 2025年中國水產(chǎn)品行業(yè)市場深度分析及投資戰(zhàn)略規(guī)劃報(bào)告
- 2025年度車輛租賃行業(yè)售后服務(wù)合同范本4篇
- 2025年度特種沙子購銷合作合同標(biāo)準(zhǔn)文本3篇
- 2025年空心機(jī)磚項(xiàng)目可行性研究報(bào)告
- 2025年合伙人創(chuàng)業(yè)企業(yè)合作協(xié)議范本4篇
- 2025年度儲(chǔ)罐租賃與智能化改造服務(wù)合同4篇
- 2025年度知識產(chǎn)權(quán)侵權(quán)財(cái)產(chǎn)保全申請書范本3篇
- 2025年中國心電監(jiān)護(hù)儀行業(yè)發(fā)展前景預(yù)測及投資戰(zhàn)略研究報(bào)告
- 二零二五年度全新女方離婚協(xié)議書范本編制與子女撫養(yǎng)權(quán)爭議解決2篇
- 《色彩基礎(chǔ)》課程標(biāo)準(zhǔn)
- 人力資源 -人效評估指導(dǎo)手冊
- 大疆80分鐘在線測評題
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 2024中考復(fù)習(xí)必背初中英語單詞詞匯表(蘇教譯林版)
- 《現(xiàn)代根管治療術(shù)》課件
- 肩袖損傷的護(hù)理查房課件
- 2023屆北京市順義區(qū)高三二模數(shù)學(xué)試卷
- 公司差旅費(fèi)報(bào)銷單
- 2021年上海市楊浦區(qū)初三一模語文試卷及參考答案(精校word打印版)
- 八年級上冊英語完形填空、閱讀理解100題含參考答案
評論
0/150
提交評論