第三章桿梁結(jié)構(gòu)的有限元原理_第1頁
第三章桿梁結(jié)構(gòu)的有限元原理_第2頁
第三章桿梁結(jié)構(gòu)的有限元原理_第3頁
第三章桿梁結(jié)構(gòu)的有限元原理_第4頁
第三章桿梁結(jié)構(gòu)的有限元原理_第5頁
已閱讀5頁,還剩100頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、1桿、梁單元概述討論桿梁單元和由它們組成的平面和空間桿梁結(jié)構(gòu)系統(tǒng).o從構(gòu)造上來說其長度遠(yuǎn)大于其截面尺寸的一維構(gòu)件o承受軸力或扭矩的桿件成為桿o桿梁問題都有精確解(且是唯一的)o承受橫向力和彎矩的桿件稱為梁o平面桁架 平面剛架 連續(xù)梁 空間剛架 空間桁架等o承受軸力或扭矩的桿件稱為桿o將承受橫向力和彎矩的桿件稱為梁o變截面桿和彎曲桿件2本章主要內(nèi)容33.1有限元分析的完整過程E1=E2=2E7PaA1=A2=2cm2l1=l2=10cmP3為10N作用下二桿結(jié)構(gòu)的變形。4E1、A1E2、A2說明:說明:u1、u2、u2分別表示分別表示節(jié)點節(jié)點1、2、3的水平位移的水平位移1)用標(biāo)準(zhǔn)化的分段小單元

2、來逼近原結(jié)構(gòu)2)尋找能夠滿足位移邊界條件的許可位移場3)基于位移場的最小勢能原理來求解 基本變量為:節(jié)點位移內(nèi)部各點位移應(yīng)變應(yīng)力(1)(3)(2)5問題的解題思路完整的求解過程1)結(jié)構(gòu)離散化 該構(gòu)件由兩根桿件做成,因此可以自然離散成2個桿單元。假定以這類單元位移的特征為兩個端點位移,就這兩個離散單元給出節(jié)點編號和單元編號。 單元1:i=1,j=2 單元2:i=2,j=36 單元位移模式:u(x)=a0+a1x 單元節(jié)點條件:u(0)=u1, u(l)=u2 將式(b)代入式(a), 從而得01,1,2jiieuuauaijl72)單元分析(a)(b)回代得 寫成矩陣形式為01( )1jiiei

3、jeeiijju xaa xuuuxlxxuullN uN uiiujujeuNNuNuu其中Ni,Nj是形函數(shù)。形函數(shù)矩陣形函數(shù)矩陣8說明:說明:u表示位移列陣表示位移列陣 ue表示單元位移表示單元位移根據(jù)幾何方程可得單元應(yīng)變的表達單元應(yīng)變寫成矩陣形式為簡記為211d1dxjieuuuauuxll11 1iiiujuejjuuNNuuleBu幾何函數(shù)矩陣或者是應(yīng)變轉(zhuǎn)換矩陣幾何函數(shù)矩陣或者是應(yīng)變轉(zhuǎn)換矩陣9根據(jù)物理方程可得單元應(yīng)力的表達單元應(yīng)力寫成矩陣形式為簡記為ddxxjieuEEEuuxleSu單元應(yīng)力矩陣或者是應(yīng)力轉(zhuǎn)換矩陣單元應(yīng)力矩陣或者是應(yīng)力轉(zhuǎn)換矩陣1 1iiiujuejjuuEE NN

4、uul節(jié)點位移列陣10單元e勢能的表達 1 122T1 1220TT1 1220TT1 1221d21d21d212eeeeeeTeeleeeleeeeee eUWPuPuBuSuAxPuPuuB EBu AxPuPuuB EBu A lPuPu 11說明說明 積分域,積分域, P1、P2、分別表示作用單元分別表示作用單元e上的節(jié)點在上的節(jié)點在u1、u2的力的力eeSueeBueeUW分別為形變勢能和外力勢能寫成矩陣形式為TT1 1221112122211121222TT1211111 1121212eeee ee eeeeeeeeeeeeeeeeuB EBu A lPuPuuuuuEA lP

5、PuullEAEAuulluuPPuuEAEAllKF 單元單元e剛度矩陣剛度矩陣單元單元e節(jié)點力列陣節(jié)點力列陣12在得到各個單元的勢能表達式后,需要進行離散單元的裝配,以求出整個系統(tǒng)的總勢能,對于該系統(tǒng),總勢能包括兩個單元部分 121T112T221T12T2112211222211121233112233221122111111123112110022012equ K uuK uP uP uEAEAEAEAuuuulllluuRuuFuuuuEAEAEAEAllllEAEAllEAEAuuull 1122213212222332200uuEAEAuRFulluuEAEAll133)離散單元

6、的裝配處理邊界條件是獲取可能位移場,將左端的約束條件,即u1=0代入上式可以得到簡化的勢能表達式 121T112T221T12T21221222223322332212102eu K uuK uP uP uEAEAEAuullluuFuuEAEAll 144)邊界條件的處理由于上式是基于許可位移場的表達的系統(tǒng)勢能,這是由全部節(jié)點位移分段所插值出的位移場為全場許位移場,且基本未知量為節(jié)點位移,根據(jù)最小勢能原理(即針對未知位移求一階變分)有12212222233220EAEAEAullluFEAEAll155)建立剛度方程120e 將結(jié)構(gòu)參數(shù)和外載荷代入上式有求解得(單位m)22222223322

7、30EAEAulluFEAEAll233102E41110uu232.5E47.5E4uu166)求解節(jié)點位移7)計算單元應(yīng)變1111211 12.5E3iiujujuNNuuul22222311 15E3iiujujuNNuuul178)計算單元應(yīng)力111121 10.05MpaiiujujuE NNuuEul2222231 10.1MpaiiujujuE NNuuEul18對于單元勢能的表達,對其取極值有具體地對于單元1,有其中R1是節(jié)點1的支反力,P2是單元1的節(jié)點2所受的力,即單元2對該節(jié)點的作用力,將前面求得的節(jié)點位移代入上式可得支反力大小。eeeK uF1111221111uREA

8、uPl199)計算支反力以上是一個簡單結(jié)構(gòu)有限元方法求解得完整過程,對于復(fù)雜結(jié)構(gòu),其求解過程完全相同,由于每一個步驟都具備標(biāo)準(zhǔn)化和規(guī)范性的特征,所以可以在計算機上編程而自動實現(xiàn)。討論1:對于一個單元的勢能取極值,所得到的方程為節(jié)點的位移和節(jié)點力之間的關(guān)系,也稱為單元的平衡關(guān)系,由此可以求出每一個單元所受的節(jié)點力。20討論2:由前面的步驟,我們也可以直接將各個單元的剛度矩陣按照節(jié)點編號的對應(yīng)位置來進行裝配,即在未處理邊界條件之前,先形成整體剛度矩陣。其物理意義是,表示在未處理邊界條件前的基于節(jié)點描述的總體平衡關(guān)系。在對該方程進行位移邊界條件的處理后就可以求解,這樣與先處理邊界條件再求系統(tǒng)勢能的最

9、小值所獲得的方程完全相同。KUF21 小結(jié) 有限元分析的基本步驟及表達式1、物體幾何區(qū)域的離散化2、單元的研究(所有力學(xué)信息都用節(jié)點位移)來表達3、裝配集成4、邊界條件的處理并求解節(jié)點位移5、支反力的求取以及其它力學(xué)量(應(yīng)力、應(yīng)變及位移三大物理量)的計算eBueFNFeSueeeK uF22有限元分析的基本步驟及表達式2324一拉壓桿單元q (x)FiFjuiujyxij圖2.1 拉壓桿單元示意圖設(shè)桿單元長度為 ,橫截面面積為 ,單元材料的彈性模量為 ,在局部坐標(biāo)系中桿端荷載分別為 和 ,桿端位移分別為 和 ,單元上的軸向分布荷載為 。 lAEiFjFiuju( )q x3.2 局部坐標(biāo)下的桿

10、單元分析25用結(jié)點位移表示單元上任意截面的位移。對拉壓桿單元,可以取其位移為一次多項式,即 由位移的邊界條件:可得系數(shù) 、 為: 這樣,截面任意一點的位移 為:用矩陣表示為: 其中 u( )u xabx(0)iuu( )ju luabiaujiuubl( )(1)ijxxu xuulliiijjijjuuN uN uNNuN1ixNl =, TjijxNuul (3-1) (3-2) 單元位移模式。26 根據(jù)材料力學(xué)中應(yīng)變的定義,有 這里 為應(yīng)變矩陣。由虎克定律,其應(yīng)力為: 11ijdudBBdxdxll NB11ll BEEBS (3-4) (3-3) 進行應(yīng)力、應(yīng)變分析EEEll SB其中

11、27利用虛位移原理求單元剛度矩陣,設(shè)桿端i、j分別產(chǎn)生虛位移 、 ,則由此引起的桿軸截面任意位置的虛位移為:對應(yīng)的虛應(yīng)變?yōu)椋焊鶕?jù)虛位移原理虛功方程(力乘以虛位移得虛功、外力虛功等于變形虛功),有: 將上式整理得: iujuTiiuuuNN B 000( )lTdllTTWq xdxWAdxEAdxFN BB 外變00( )TllTTTdq xdxEA dxFNBB (3-5) (3-6) 求單元剛度矩陣28式中 :為局部坐標(biāo)系下單元結(jié)點荷載矩陣。記 則可以得到拉壓桿單元的單元剛度方程為: 這里 為局部坐標(biāo)系下的單元剛度矩陣 , 為局部坐標(biāo)系下等效結(jié)點荷載矩陣,但值得指出的是:分布荷載 中可以包

12、含集中荷載。根據(jù)定義,可以進一步求得單元剛度矩陣為: TdijFFF0( )lTEq xdxFN0lTEA dxkBBdEFFFk kEF( )q x1111EAlk (3-10) (3-7) (3-8) (3-9) 等效結(jié)點荷載29二扭轉(zhuǎn)桿單元m (x)MiMjyxijji圖2 扭轉(zhuǎn)桿單元示意圖設(shè)扭轉(zhuǎn)桿單元的長度為 ,截面慣性矩為 ,剪切模量為 ,桿端扭矩分別為 、 ,桿端扭轉(zhuǎn)角分別為 、 ,單元上的分布荷載集度為 ,則任意截面的扭轉(zhuǎn)角為 位移函數(shù)求得如(一) lIGiMjMij( )m x(1)ijxxll N式中 為局部坐標(biāo)系下扭轉(zhuǎn)桿單元的結(jié)點位移矩陣Tij (3-11) 30由材料力學(xué)

13、可知,截面扭矩為:式中: 我們利用極小勢能原理來進行單元分析,桿單元的勢能用泛函表示為: dMGIGIdxB11ddxll NB00001()( )21( )2llTTpdllTTTddMdxm xdxdxGI dxm xdx FBBNF內(nèi)力勢能外力勢能其中 為局部坐標(biāo)系下扭轉(zhuǎn)桿單元的結(jié)點集中荷載矩陣TdijMMF (3-12) 31由極小勢能原理,取上述泛函的變分 ,可得: 或者寫為:設(shè): 可得扭轉(zhuǎn)桿單元的單元剛度方程為: 可以看到,其形式與拉壓桿單元的單元剛度方程完全一致。同樣,由上式可以進一步求得其局部坐標(biāo)系下得單元剛度矩陣為: 0p 00( )llTTTdGI dxm xdxBBNF0

14、0()( )llTTdGI dxm xdxBBNF0lTGI dxkBB0( )lTEm xdxFNdEFFk 1111GIlk (3-13a) (3-13b) (3-14、3-15) (3-16) (3-17) 等效結(jié)點荷載32三只計彎曲的桿單元q (x)MiMjFyiFyjvivjyxm (x)ijji設(shè)桿單元的長度為 ,截面慣性矩為 ,彈性模量為 ,桿端集中剪力為 、 ,桿端集中彎矩分別為 、 ,桿端橫向位移為 、 ,桿端扭轉(zhuǎn)角分別為 、 ,在單元上分布有荷載集度為 的豎向分布荷載和集度為 的分布力偶。lIEyiFyjFiMjMivjvij( )q x( )m x33根據(jù)梁的平截面假定可

15、知平面純彎梁單元的軸向應(yīng)變?yōu)椋哼@里利用平截面假設(shè)(這里利用平截面假設(shè)(變形后橫截面仍保持平面,與縱線正交)如圖: 22223322dxvdEyEdxvdydxvdEIQdxvdEIMdxdv應(yīng)變和應(yīng)力公式:彎曲公式: 材料力學(xué)基礎(chǔ)知識34取撓曲線方程為 的三次多項式,即單元上任意一點的撓度為: 根據(jù)單元的位移邊界條件: 時: 時: TiijjvvTdyiiyjjFMFMFx23vabxcxdx0 x iidvvvdxxl jjdvvvdx222323212312121ijiijjiijjavbvcvvlllldvvllll 可以得到式中的待定系數(shù)結(jié)點位移矩陣和結(jié)點荷載矩陣分別為 (3-18)

16、35將系數(shù)a、b、c、d代入式,并將撓曲線方程用矩陣形式表示為: 式中 為形函數(shù)矩陣,其中: 上式為平面彎曲單元的形函數(shù)。 2322323210000100323112121iijjvvxxxvllllllllN1234NNNNN232122322323342323221 (1)32 xxxxNNxllllxxxxNNllll (3-19) (3-20) 36 根據(jù)式(2-19)確定的單元位移場,可得單元上某一點得曲率為: 截面的彎矩為: 這里: 為平面彎曲桿單元的應(yīng)變矩陣。 根據(jù)虛位移原理。有: 2222d vddxdxNBTTMEIEIEIBB222322326124661226dxxxx

17、dxllllllll NB000( )( )llTdlTTdWq xdxm xdxWdxEI dxNNFBB外變 (3-21) 37 則平面彎曲桿單元的單元剛度方程為: 其中的單元剛度矩陣可由式(2-23)求得為: 00( )( )llEdq xdxm xdxdxNFN0lTEI dxkBBdEFFk 2232212612664621261266264llllllEIlllllllk 記:(3-23)(3-22)等效結(jié)點荷載(3-24)(3-25)38四平面一般桿單元(考慮拉伸、彎曲、不考慮扭轉(zhuǎn))MiMjFxiFyiFxjFyjuiviujvjyxji桿單元的長度為 ,截面面積為 ,截面慣性矩

18、為 ,彈性模量為 ,單元的 、 端各有三個力為 、 、和 、 、 ,其對應(yīng)的位移為 、 、 和 、 、 ,建立如圖所示的局部坐標(biāo)系,各物理量的正向如圖中所標(biāo)。lAIEijxiFyiFiMxjFyjFjMiuivijujvj39 TiiijjjuvuvTxiyiixjyjjFFMFFMF設(shè)單元上沒有荷載作用,首先考慮軸向力的作用,由于桿端軸力 、 只引起桿端軸向位移 、 ,根據(jù)拉壓桿單元的單元剛度方程,有: xiFxjFiujuxiijEAEAFuullxjijEAEAFuull 則結(jié)點位移矩陣和結(jié)點荷載矩陣分別為: (3-26)(3-27)40 其次,桿端彎矩 、 和桿端剪力 、 只與桿端的轉(zhuǎn)

19、角位移 、 和桿端的橫向位移 、 有關(guān)系,根據(jù)只計彎曲桿單元的單元剛度方程(注意,由于不考慮單元上的荷載作用,故方程式中的等效結(jié)點荷載 等于零)可得:iMjMyiFyjFijivjvEF3232126126yiiijjEIEIEIEIFvvllll3232126126yjiijjEIEIEIEIFvvllll 226462iiijjEIEIEIEIMvvllll226264jiijjEIEIEIEIMvvllll結(jié)構(gòu)力學(xué)相關(guān)知識41這樣,上述表達式合并在一起,寫成矩陣形式如下: 323222323222000012612600646200000012612600626400ixiiyiiijx

20、jjyjjjEAEAllEIEIEIEIuFllllvFEIEIEIEIMlllluFEAEAllvFEIEIEIEIMllllEIEIEIEIllllFk 可以將上式簡寫為:(3-28)(3-29)42其中單元剛度矩陣323222323222000012612600646200000012612600626400eEAEAllEIEIEIEIllllEIEIEIEIllllkEAEAllEIEIEIEIllllEIEIEIEIllll(3-30)43五 空間受力桿件單元(考慮扭轉(zhuǎn)、拉伸、彎曲)MxiMyjFxiFyiFxjFyjyxziMziFziMyiMxjMzjFzjj對空間桿件單元,除

21、了桿端力和結(jié)點位移數(shù)目較平面單元多外,其分析方法與平面桿單元類似(包含拉伸、扭轉(zhuǎn)、兩個方向彎曲)x設(shè)局部坐標(biāo)系的 軸為單元的形心主軸,橫截面的兩個主軸分別為 軸和 軸(如圖所示)。設(shè)桿橫截面面積為 ,桿單元長度為 ,在 平面內(nèi)抗彎剛度為 ,在 平面內(nèi)的抗彎剛度為 ,桿件的抗扭剛度為 。 xyzAlx zyEIx yzEIEI44空間剛架有6個位移分量和6個結(jié)點力分量,設(shè)局部坐標(biāo)系下它們分別為TiiixiyizijjjxjyjzjuvwuvwTxiyizixiyizixjyjzjxjyjzjFFFMMMFFFMMMFo純軸向拉壓,1111iju uEAklo純扭轉(zhuǎn),1111ijGlkI 45ox

22、oy面內(nèi)彎曲22z,32212612664621261266264vizivjzjllllllEIkllllllloxoz面內(nèi)彎曲22,32212612664621261266264yiwjyjwiyllEIllllklllllll46323232320000000000000000000000000000000000000126126126126zzzzxiyiyyyyzixiyizixjyjzjxjyjzjEAEAllEIEIEIEIFllllFEIEIEIEIllllFGIGIllMMMFFFMMM222232323232220000000000000000000000000000000

23、000000000000000000000000000006462646212612612612662646yyyyzzzzzzzzyyyyyyyyEIEIEIEIllllEIEIEIEIllllEAEAllEIEIEIEIllllEIEIEIEIllllGIGIllEIEIEIEIllll220000000264iiixiyizijjjxjyjzjzzzzuvwuvwEIEIEIEIllll (3-31)47其中的單元剛度矩陣可寫為Fk將式(2-31)寫成矩陣的形式有323232322222300000000000000000000000000000000000000000000000000

24、000000000000000012612612612664626462126zzzzyyyyyyyyzzzzzEAEAllEIEIEIEIllllEIEIEIEIllllGIGIllEIEIEIEIllllEIEIEIEIllllEAEAllEIEl232323222220000000000000000000000000000000000000012612612662646264zzzyyyyyyyyzzzzIEIEIlllEIEIEIEIllllGIGIllEIEIEIEIllllEIEIEIEIllll(3-32)(3-33)48六單元剛度矩陣的性質(zhì) 單元剛度矩陣 為對稱矩陣,其元素 單

25、元剛度矩陣 中的每個元素代表單位桿端位移引起的桿端力。其中的任意元素 的物理意義是第 個桿端位移分量等于1(其余位移分量等于0)時,所引起的第 個桿端力的分量值。k()ijjikkijkijkji49 一般單元的單元剛度矩陣 是奇異矩陣,它的元素組成的行列式等于零,即 。根據(jù)奇異矩陣的性質(zhì), 沒有逆矩陣。也就是說,如果給定桿端位移 ,根據(jù)(2-29)或(2-31)式可以求出桿端力 的惟一解,但反過來,如果已知桿端力 ,則不能根據(jù) 來確定桿端位移 的惟一解。因為即使在桿端力已知的情況下,由于單元兩端無任何約束,因此除出桿端自身變形外,還可以發(fā)生任意的剛體位移。舉例來說,如果物體處于靜止?fàn)顟B(tài),我們

26、可以說其處于平衡狀態(tài),但反過來,如果物體處于平衡狀態(tài),則我們不能說其一定處于靜止。 k0kkF1()dkFF50 單元剛度矩陣 具有分塊的性質(zhì),即可以用子矩陣表示 。用虛線把 分為四個子矩陣,把 和 各分為兩個子矩陣,因此,又可以寫為: 這里: 或 或 或 或 用子矩陣形式表示單元剛度矩陣和單元剛度方程,可以使其表達的物理意義更加明顯。在單元剛度矩陣 中,其任意子矩陣 表示桿端力 和桿端位移 之間的關(guān)系。 kkkFiiiijijjijjjFkkFkkTixiyiiFFMFTixiyizixiyiziFFFMMMFTjxjyjjFFMFTjxjyjzjxjyjzjFFFMMMFTiiiiuvTi

27、iiixiyiziuvwTjjjjuvTjjjjxjyjzjuvwkrskrFs(3-34)513.3桿系結(jié)構(gòu)的整體分析(整體坐標(biāo)系)一平面問題坐標(biāo)轉(zhuǎn)換矩陣圖 平面問題桿端力轉(zhuǎn)換示意圖ijoyxMiMjFxiFyiFxjFyjyxFxiFxjFyiFyjMjMiijoyxyx一般情況下,在進行單元分析時是在局部坐標(biāo)下完成的。對于某一單元而,如果局部坐標(biāo)系與整體坐標(biāo)系不一致,則有單元分析的物理量必須通過坐標(biāo)轉(zhuǎn)換到整體坐標(biāo)系中,然后再進行整體坐標(biāo)系下的分析52 這里 表示由 軸到 軸的角,角度轉(zhuǎn)動的正負(fù)由右手定則確定,本書中以順時針方向轉(zhuǎn)動為正。在兩個坐標(biāo)系中,力偶分量保持不變,即有: 同理,對于

28、 端的桿端力,有: c o ss ins inc o sx ix iy iy ix iy iFFFFFF xxiiMMjcossinsincosxjxjyjyjxjyjjjFFFFFFMM 根據(jù)力的投影定理,將整體坐標(biāo)下的桿端力分別投影到局部坐標(biāo)下,有如下關(guān)系(3-35)(3-36)(3-36)53將這些式子用矩陣形式可表示為:cossin0000sincos0000001000000cossin0000sincos0000001xixiyiyiiixjxjyjyjjjFFFFMMFFFFMM FTFcossin0000sincos0000001000000cossin0000sincos00

29、00001T上式可以簡寫成:這即為兩種坐標(biāo)系下單元桿端力的坐標(biāo)變換式。其坐標(biāo)轉(zhuǎn)換矩陣為:(3-38)(3-39)(3-40)54從坐標(biāo)轉(zhuǎn)換矩陣 的表達式可以看出, 為正交矩陣,其逆矩陣等于其轉(zhuǎn)置矩陣,即有: 并且有: 式中 為單位矩陣。 同樣的推導(dǎo),可以得到兩種坐標(biāo)系下的桿端位移之間的轉(zhuǎn)換關(guān)系為: 這里 和 分別為局部坐標(biāo)系和整體坐標(biāo)系下的桿端位移矩陣, 為前面介紹的轉(zhuǎn)換矩陣。 TT1TTT1TTIIT T整體坐標(biāo)下的桿端力為( )TexiyiixjyjjFFFMFFM局部坐標(biāo)下的桿端力為( )TexiyiixjyjjFFFMFFM(3-42)(3-41)(3-43)(3-44)(3-45)5

30、5因此可得:上式兩邊同乘以 ,可以得到: 設(shè) 可得: 上式即為整體坐標(biāo)系下的單元剛度方程。 T Fk T 1T1TFTk T Tk T TkTk TFk (3-47)(3-46)剛度矩陣轉(zhuǎn)換)56二 空間問題的坐標(biāo)變換(空間問題) oFxiFyiFxjFyjyxxyzijFzjFziz考慮結(jié)點i在局部坐標(biāo)下 的桿端力 與在整體坐標(biāo)系 的桿端力 的關(guān)系 oxyz,xiyiziFFFoxyz,xiyiziFFF57設(shè) 軸與x、y、z軸的方向余弦分別為: , , 則將桿端力 、 、 向 軸投影,可以求得桿端力 ,即:同理可以求得: xcos( , )xxlx xcos( , )xylx ycos(

31、, )xzlx zxiFyiFziFxxiFxixi xxyi xyzi xzFF lF lF lyixi yxyi yyzi yzFF lF lF lzixi zxyi zyzi zzFF lF lF l58用矩陣形式可以表示為:上式即為結(jié)點i的桿端力在局部坐標(biāo)系和整體坐標(biāo)系下的轉(zhuǎn)換關(guān)系,其中的矩陣稱為關(guān)系矩陣。與上面的推導(dǎo)類似,同樣可以推出以 、 、 表示 、 、 ,以及對于結(jié)點j的相對應(yīng)的轉(zhuǎn)換關(guān)系,其中轉(zhuǎn)換關(guān)系矩陣都是 。 xixxxyxzxiyiyxyyyzyizizxzyzzziFlllFFlllFFlllFxxxyxzyxyyyzzxzyzzlllllllllxiMyiMziMxi

32、MyiMziM 綜上所述,整體坐標(biāo)系下單元桿端力矩陣與局部坐標(biāo)系下單元桿端力矩陣具有如下的關(guān)系表達式:FT F(3-48)59其中的 為:稱為空間坐標(biāo)系的單元轉(zhuǎn)換矩陣,它是一個正交矩陣,即:對于桿端位移,同樣可推導(dǎo)出在兩種坐標(biāo)系中的轉(zhuǎn)換關(guān)系: 這樣,可得空間桿件單元在整體坐標(biāo)系中單元剛度方程為: 其中表示空間單元在整體坐標(biāo)系中的單元剛度矩陣。TT0000000000001TTTT Fk TkTk T(3-49)(3-50)(3-51)(3-52) (3-53)60三桿系結(jié)構(gòu)的整體分析對桿系結(jié)構(gòu)進行單元分析,僅僅是有限元分析中的第一步。我們的目的是要對整個結(jié)構(gòu)進行分析,研究結(jié)構(gòu)的整體性能。因此,

33、在對結(jié)構(gòu)的各單元分析完成后,必須將單元分析的結(jié)果進行整合,對結(jié)構(gòu)進行整體分析。整體分析的過程實際上是如何將單元分析的結(jié)果進行有效組合,建立整體剛度方程并求解結(jié)點位移的過程。根據(jù)對結(jié)點位移的編碼方式,可以采用“先處理法”和“后處理法”來建立整體剛度方程。 611后處理法所謂后處理法,就是由單元剛度矩陣形成整體剛度矩陣,建立剛度方程后再引入支承條件,進而求解結(jié)點位移的方法。運用這種方法時,假設(shè)所有結(jié)點位移均為未知量,按照順序統(tǒng)一進行編碼,如圖所示的平面桿件單元。1 (1 2 3)2 (4 5 6)3 (7 8 9)4 (10 11 12)213xyO62結(jié)點位移矩陣為:結(jié)點荷載矩陣為:求出各單元剛

34、度方程后,根據(jù)平衡條件和位移連續(xù)條件,可以建立整個結(jié)構(gòu)的位移法方程:1234111222333444TTuvuvuvuv1234111222333444TTxyxyxyxyFFMFFMFFMFFMFFFFF11223344iiijjijjiiijjijjiiijjijjkkFkkkkFkkkkFkkF00000063 簡 寫成: 這里 為結(jié)構(gòu)的整體剛度矩陣,有: FK K11121314212223243132333441424344KKKKKKKKKKKKKKKKK注意,在建立方程的過程中,我們假設(shè)所有結(jié)點都有位移。因此整個結(jié)構(gòu)在外力作用下,除了發(fā)生彈性變形外,還可能發(fā)生剛體平動位移,這樣各

35、結(jié)點位移不能唯一確定。這說明整體剛度矩陣為一奇異矩陣,不能求逆矩陣,即根據(jù)整體剛度方程可得到無窮多個解。 64實際上,在圖所示剛架中,結(jié)點1和結(jié)點4均為固定端,其三個位移分量均為0,即有:這樣,將上述支承條件引入到方程中,對整體剛度方程進行修改,可得:1114440uvuv11121314121222324223132333433414243444KKKKKKKKKKKKKKKKFFFF0065對上述方程進行化簡,可以得到兩組方程: 和 222232332333KKKKFF12214334KKFF00這樣,利用第1式可以求得結(jié)點位移 和 ,再根據(jù)第2式可以求得支座反力 和 。 231F4F66

36、2先(前)處理法所謂先處理法,就是先引入支承條件,根據(jù)支承條件僅對未知的自由結(jié)點位移分量編號,得到的位移矩陣中不包含已知的約束位移分量,即可以直接得到方程求解自由結(jié)點位移分量。67如圖所示的平面剛架結(jié)構(gòu)ABCD,由于在A處和D處均為固定端,其位移為0,故位移編碼均為0,在C處為鉸接,故BC桿在C端的角位移與DC桿在C端的角位移不相同,因此在C處編兩個結(jié)點3和4,但結(jié)點3和4的橫向位移和豎向位移相同,故采用相同的編號,各結(jié)點位移編碼如圖所示。圖先處理法位移編碼示意圖1 (0 0 0)2 (1 2 3)3 (4 5 6)4 (4 5 7)ABCD5 (0 0 0)213xyO683.4等效結(jié)點荷載

37、與邊界條件的處理非結(jié)點等效荷載和邊界條件的處理是有限元分析中必須考慮的的兩個重要方面。由于只考慮結(jié)點荷載,因此必須將作用于單元上的非結(jié)點荷載轉(zhuǎn)換到節(jié)點上。有限元的結(jié)點荷載來自兩部分(1)作用于結(jié)點處的集中力、集中力偶,前面多次提到的 直接疊加到結(jié)點上即可(整體坐標(biāo)下)(2)非結(jié)點荷載首先須在局部坐標(biāo)下等效到結(jié)點荷載 , 然后再轉(zhuǎn)到整體坐標(biāo)系下的 ( )edF( )eEF( )eEF691非結(jié)點荷載的處理在前面的分析中,我們已經(jīng)介紹了求等效結(jié)點荷載的方法,如3-7式、3-15式、3-22式分別可用來求不同情況下的等效結(jié)點荷載。此外,可以這樣來考慮:第一步,在局部坐標(biāo)系下求單元的固端力 。對于某個

38、單元,我們假定單元的兩端均固定,然后根據(jù)靜力平衡求得固定端的反力。第二步,根據(jù)單元固端力求單元的等效結(jié)點荷載 。根據(jù)局部坐標(biāo)系與整體坐標(biāo)系單元桿端力的變換式,固端內(nèi)力在兩種坐標(biāo)系下的變換形式可以寫成:因此,整體坐標(biāo)系下的等效結(jié)點荷載矩陣可以由下式計算: fFTffFTFEFTEf FTF0( )lTEq xdxFN0( )lTEm xdxFN00( )( )llEdq xdxm xdxdxNFN(3-7)(3-15)(3-22)(拉壓桿)純彎桿扭轉(zhuǎn)桿70平面剛架單元固端力(遵行結(jié)構(gòu)力學(xué))71722邊界條件的處理 (1)鉸結(jié)點)鉸結(jié)點在桿系結(jié)構(gòu)中,除了剛性結(jié)點外,通常會遇到一些桿件通過鉸結(jié)點與其

39、它桿件聯(lián)結(jié),如下圖所示桿件系統(tǒng),有4根桿件匯交于D點,其中BD桿在D端通過鉸支座與其它桿件鉸接,其余3根桿為剛性接觸。對于這樣的鉸結(jié)點,具有如下的性質(zhì):鉸結(jié)點上各桿具有相同的線位移,但截面的轉(zhuǎn)角位移不相同;結(jié)點上具有鉸接桿端不承受彎矩作用。如下圖所示結(jié)構(gòu)中,BD桿在D端的桿端彎矩為0,只有CD、ED、GD桿在結(jié)點D上與外彎矩保持平衡。73對于這樣的結(jié)點,我們在對其進行單元劃分時,通??紤]在D處設(shè)置2個結(jié)點。按照先處理法,對圖示結(jié)構(gòu)進行位移編碼,如圖2b所示。ABCDEHGF1 (0 0 1)2 (2 3 4)3 (5 6 7)4 (5 6 8)5 (0 0 0)6 (9 10 11)7 (0

40、0 0)8 (12 13 14)9 (15 16 17)圖鉸結(jié)點的處理示意圖 ANSYS通過結(jié)點耦合實現(xiàn)742彈性支承點彈性支承點在實際工程中,有時會遇到彈性支承的情況(如圖),這時一般將彈性支座看作是在結(jié)構(gòu)約束點沿約束方向的一個彈簧,彈簧的剛度系數(shù)為 , 在數(shù)值上等于使彈簧支座沿約束方向產(chǎn)生單位位移時所需施加的力。 kk12i-1ii+1nkANSYS引入彈簧單元即可75具體做法可以歸結(jié)為:先解除彈性支承點約束,在i處給一個結(jié)點號,形成總剛度矩陣,然后在總剛度矩陣中將第i行的主元素加上彈性支承的剛度系數(shù),此時第行變?yōu)椋?23iiiiiinKKKKkK以上的分析也適用與角位移為彈性約束的情況。

41、若有多個彈性支座,可同時引入,即只需將相應(yīng)的主對角線元素加上相應(yīng)的彈性剛度系數(shù)即可。76例1 3.5桿系結(jié)構(gòu)有限元計算實例1 結(jié)構(gòu)的離散化與編號 772 各個單元的矩陣描述 結(jié)構(gòu)包括有斜桿,所以必須在總體坐標(biāo)下對節(jié)點位移進行表達,所推導(dǎo)的單元剛度矩陣也要進行變換22222222-eeeeTeeeccsccscsscssE AkT k Tlccsccscsscss783 建立整體剛度方程 1.將所得到的各個單元剛度矩陣按節(jié)點編號進行組裝,可以形成整體剛度矩陣;2.同時將所有節(jié)點載荷也進行組裝。 794 邊界條件的處理及剛度方程求解 80815 各單元應(yīng)力的計算 826 支反力的計算 將節(jié)點位移的

42、結(jié)果代入整體剛度方程中83對于單元2:取i=1,j=2,則 , 故 x 1 2 3 1 1 p 45o y 對于單元1:取i=3,j=1,則c=1,s=0,故 111333111111131110-1 00000-1 0100000kkE Aklkk22,22sc22211122222212221-1 -11-111-1-111-12 21-1 -11kkE Akkkl對于單元3:取i=2,j=3,則c=0,s=1,故 333333233333232200-0-001-0-10-000-0-101kkE Aklkk84例 2整體編號,對號入座得總剛1 22111121322 332122231

43、31 331323311111102 22 22 22 21111002 22 22 22 21111002 22 22 22 211111012 22 22 22 2100010000101kkkKkkkkkk8511112222333311111102 22 22 22 21111002 22 22 22 21111002 22 22 22 211111012 22 22 22 2100010000101xyxyxyFuFvFuFvFuFv11112233111102 22 22 211102 22 22 2111112 22 22 20001xyyyFuFvFvFv 86消除邊界條件后有 求解左式即可得到相關(guān)位移、應(yīng)力、應(yīng)變等等87例3其中E1=3e4MPa,E2=3e4MPa解(1)單元劃分,建立局部坐標(biāo)系和整體坐標(biāo)系,并對數(shù)據(jù)進行整理,對單元和結(jié)點編號4444234300 10 ,100 10 ,61230 10 ,12 10EAEIllEIEIll88(2) 求局部坐標(biāo)系下的單元剛度矩陣,由于單元1和2的尺寸完全一樣,因此其單元剛度矩陣一樣,為(1)(2)4300003000001230012300

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論