線性規(guī)劃的靈敏度分析實驗報告_第1頁
線性規(guī)劃的靈敏度分析實驗報告_第2頁
線性規(guī)劃的靈敏度分析實驗報告_第3頁
線性規(guī)劃的靈敏度分析實驗報告_第4頁
線性規(guī)劃的靈敏度分析實驗報告_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、真誠為您提供優(yōu)質(zhì)參考資料,若有不當之處,請指正。運籌學/線性規(guī)劃實驗報告實驗室: 實驗日期:實驗項目線性規(guī)劃的靈敏度分析系 別數(shù)學系姓 名學 號班 級指導教師成 績一 實驗目的掌握用Lingo/Lindo對線性規(guī)劃問題進行靈敏度分析的方法,理解解報告的內(nèi)容。初步掌握對實際的線性規(guī)劃問題建立數(shù)學模型,并利用計算機求解分析的一般方法。二 實驗環(huán)境Lingo軟件三 實驗內(nèi)容(包括數(shù)學模型、上機程序、實驗結果、結果分析與問題解答等)例題2-10MODEL: _1 MAX= 2 * X_1 + 3 * X_2 ; _2 X_1 + 2 * X_2 + X_3 = 8 ; _3 4 * X_1 + X_4

2、 = 16 ; _4 4 * X_2 + X_5 = 12 ; END編程sets:is/1.3/:b;js/1.5/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);for(is(I):sum(js(J):a(I,J)*x(J)=b(I);data:c=2 3 0 0 0;b=8 16 12;a=1 2 1 0 0 4 0 0 1 0 0 4 0 0 1;end dataend靈敏度分析 Ranges in which the basis is unchanged: Objective Coefficient Ranges Current

3、Allowable Allowable Variable Coefficient Increase Decrease X( 1) 2.000000 INFINITY 0.5000000 X( 2) 3.000000 1.000000 3.000000 X( 3) 0.0 1.500000 INFINITY X( 4) 0.0 0.1250000 INFINITY X( 5) 0.0 0.7500000 0.2500000Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 8.000000 2

4、.000000 4.000000 3 16.00000 16.00000 8.000000 4 12.00000 INFINITY 4.000000當b2在8,32之間變化時 最優(yōu)基不變最優(yōu)解 Global optimal solution found at iteration: 0 Objective value: 14.00000Variable Value Reduced Cost B( 1) 8.000000 0.000000 B( 2) 16.00000 0.000000 B( 3) 12.00000 0.000000 C( 1) 2.000000 0.000000 C( 2) 3.

5、000000 0.000000 C( 3) 0.000000 0.000000 C( 4) 0.000000 0.000000 C( 5) 0.000000 0.000000 X( 1) 4.000000 0.000000 X( 2) 2.000000 0.000000 X( 3) 0.000000 1.500000 X( 4) 0.000000 0.1250000X( 5) 4.000000 0.000000A( 1, 1) 1.000000 0.000000A( 1, 2) 2.000000 0.000000 A( 1, 3) 1.000000 0.000000 A( 1, 4) 0.00

6、0000 0.000000 A( 1, 5) 0.000000 0.000000 A( 2, 1) 4.000000 0.000000 A( 2, 2) 0.000000 0.000000 A( 2, 3) 0.000000 0.000000 A( 2, 4) 1.000000 0.000000 A( 2, 5) 0.000000 0.000000 A( 3, 1) 0.000000 0.000000 A( 3, 2) 4.000000 0.000000 A( 3, 3) 0.000000 0.000000 A( 3, 4) 0.000000 0.000000 A( 3, 5) 1.00000

7、0 0.000000Row Slack or Surplus Dual Price 1 14.00000 1.000000 2 0.000000 1.500000 3 0.000000 0.1250000 4 0.000000 0.000000例題2-11模型MAX 2 X( 1) + 3 X( 2) SUBJECT TO 2 X( 1) + 2 X( 2) + X( 3) = 12 3 4 X( 1) + X( 4) = 16 4 4 X( 2) + X( 5) = 12 END編程sets:is/1.3/:b;js/1.5/:c,x;links(is,js):a;endsetsmax=su

8、m(js(J):c(J)*x(J);for(is(I):sum(js(J):a(I,J)*x(J)=b(I);data:c=2 3 0 0 0;b=12 16 12;a=1 2 1 0 0 4 0 0 1 0 0 4 0 0 1;end dataend最優(yōu)解 Global optimal solution found at iteration: 2 Objective value: 17.00000Variable Value Reduced Cost B( 1) 12.00000 0.000000 B( 2) 16.00000 0.000000 B( 3) 12.00000 0.000000

9、 C( 1) 2.000000 0.000000 C( 2) 3.000000 0.000000 C( 3) 0.000000 0.000000 C( 4) 0.000000 0.000000 C( 5) 0.000000 0.000000 X( 1) 4.000000 0.000000 X( 2) 3.000000 0.000000 X( 3) 2.000000 0.000000 X( 4) 0.000000 0.5000000 X( 5) 0.000000 0.7500000 A( 1, 1) 1.000000 0.000000A( 1, 2) 2.000000 0.000000 A( 1

10、, 3) 1.000000 0.000000 A( 1, 4) 0.000000 0.000000 A( 1, 5) 0.000000 0.000000 A( 2, 1) 4.000000 0.000000 A( 2, 2) 0.000000 0.000000A( 2, 3) 0.000000 0.000000 A( 2, 4) 1.000000 0.000000 A( 2, 5) 0.000000 0.000000 A( 3, 1) 0.000000 0.000000 A( 3, 2) 4.000000 0.000000 A( 3, 3) 0.000000 0.000000 A( 3, 4)

11、 0.000000 0.000000 A( 3, 5) 1.000000 0.000000 Row Slack or Surplus Dual Price 1 17.00000 1.000000 2 0.000000 0.000000 3 0.000000 0.5000000 4 0.000000 0.7500000最優(yōu)解(4,3,2,0,0)最優(yōu)值z=17分析 Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient

12、 Increase Decrease X( 1) 2.000000 INFINITY 2.000000 X( 2) 3.000000 INFINITY 3.000000 X( 3) 0.0 1.500000 INFINITY X( 4) 0.0 0.5000000 INFINITY X( 5) 0.0 0.7500000 INFINITY Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 12.00000 INFINITY 2.000000 3 16.00000 8.000000 16.0

13、0000 4 12.00000 4.000000 12.00000例題2-12模型MAX 2 X( 1) + 3 X( 2) SUBJECT TO 2 X( 1) + 2 X( 2) + X( 3) = 8 3 4 X( 1) + X( 4) = 16 4 4 X( 2) + X( 5) = 12 END編程sets:is/1.3/:b;js/1.5/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);for(is(I):sum(js(J):a(I,J)*x(J)=b(I);data:c=2 3 0 0 0;b=8 16 12;a=1 2 1

14、0 0 4 0 0 1 0 0 4 0 0 1;end dataend靈敏度分析Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X( 1) 2.000000 INFINITY 0.5000000 X( 2) 3.000000 1.000000 3.000000 X( 3) 0.0 1.500000 INFINITY X( 4) 0.0 0.1250000 INFINITY

15、X( 5) 0.0 0.7500000 0.2500000Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 8.000000 2.000000 4.000000 3 16.00000 16.00000 8.000000 4 12.00000 INFINITY 4.000000由靈敏度分析表知道C2在【0,4】之間變化時,最優(yōu)基不變。第六題模型MODEL: _1 MAX= 3 * X_1 + X_2 + 4 * X_3 ; _2 6 * X_1 + 3 * X_2 + 5 * X_3 = 4

16、50 ; _3 3 * X_1 + 4 * X_2 + 5 * X_3 = 300 ; END編程sets:is/1.2/:b;js/1.3/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);for(is(I):sum(js(J):a(I,J)*x(J)=b(I);data:c=3 1 4;b=450 300;a=6 3 5 3 4 5;end dataEnd最優(yōu)解 Global optimal solution found. Objective value: 270.0000 Infeasibilities: 0.000000 Total

17、solver iterations: 2Variable Value Reduced Cost B( 1) 450.0000 0.000000 B( 2) 300.0000 0.000000 C( 1) 3.000000 0.000000 C( 2) 1.000000 0.000000 C( 3) 4.000000 0.000000 X( 1) 50.00000 0.000000 X( 2) 0.000000 2.000000 X( 3) 30.00000 0.000000 A( 1, 1) 6.000000 0.000000 A( 1, 2) 3.000000 0.000000 A( 1,

18、3) 5.000000 0.000000 A( 2, 1) 3.000000 0.000000 A( 2, 2) 4.000000 0.000000 A( 2, 3) 5.000000 0.000000 Row Slack or Surplus Dual Price 1 270.0000 1.000000 2 0.000000 0.2000000 3 0.000000 0.6000000第一問:A生產(chǎn)50 B生產(chǎn)0 C生產(chǎn)30 有最高利潤270元;第二問:單個價值系數(shù)和右端系數(shù)變化范圍的靈敏度分析結果Ranges in which the basis is unchanged: Objecti

19、ve Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X( 1) 3.000000 1.800000 0.6000000 X( 2) 1.000000 2.000000 INFINITY X( 3) 4.000000 1.000000 1.500000 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 450.0000 150.0000 150.0000 3 300.

20、0000 150.0000 75.00000當A的利潤在【2.4,4.8】之間變化時,原最優(yōu)生產(chǎn)計劃不變。第三問:模型MODEL: _1 MAX= 3 * X_1 + X_2 + 4 * X_3 + 3 * X_4 ; _2 6 * X_1 + 3 * X_2 + 5 * X_3 + 8 * X_4 = 450 ; _3 3 * X_1 + 4 * X_2 + 5 * X_3 + 2 * X_4 = 300 ; END編程sets:is/1.2/:b;js/1.4/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);for(is(I):sum(

21、js(J):a(I,J)*x(J)=b(I);data:c=3 1 4 3;b=450 300;a=6 3 5 8 3 4 5 2;end dataEnd最優(yōu)解 Global optimal solution found. Objective value: 275.0000 Infeasibilities: 0.000000 Total solver iterations: 2 Variable Value Reduced Cost B( 1) 450.0000 0.000000 B( 2) 300.0000 0.000000 C( 1) 3.000000 0.000000 C( 2) 1.0

22、00000 0.000000 C( 3) 4.000000 0.000000 C( 4) 3.000000 0.000000 X( 1) 0.000000 0.1000000 X( 2) 0.000000 1.966667 X( 3) 50.00000 0.000000 X( 4) 25.00000 0.000000 A( 1, 1) 6.000000 0.000000 A( 1, 2) 3.000000 0.000000 A( 1, 3) 5.000000 0.000000 A( 1, 4) 8.000000 0.000000 A( 2, 1) 3.000000 0.000000 A( 2,

23、 2) 4.000000 0.000000 A( 2, 3) 5.000000 0.000000 A( 2, 4) 2.000000 0.000000 Row Slack or Surplus Dual Price 1 275.0000 1.000000 2 0.000000 0.2333333 3 0.000000 0.5666667利潤275元 值得生產(chǎn)。第四問由單個價值系數(shù)和右端系數(shù)變化范圍的靈敏度分析結果Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allow

24、able Variable Coefficient Increase Decrease X( 1) 3.000000 1.800000 0.6000000 X( 2) 1.000000 2.000000 INFINITY X( 3) 4.000000 1.000000 1.500000 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 450.0000 150.0000 150.0000 3 300.0000 150.0000 75.00000當購買150噸時 此時可買360元 在減去購買

25、150噸的進價60元 此時可獲利300超過了原計劃,應該購買。第七題模型MODEL: _1 MAX= 30 * X_1 + 20 * X_2 + 50 * X_3 ; _2 X_1 + 2 * X_2 + X_3 = 430 ; _3 3 * X_1 + 2 * X_3 = 410 ; _4 X_1 + 4 * X_2 = 420 ; _5 X_1 + X_2 + X_3 = 70 ; _7 X_3 = 240 ; END編程sets:is/1.6/:b;js/1.3/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);sum(js(J):a(

26、1,J)*x(J)=b(1);sum(js(J):a(2,J)*x(J)=b(2);sum(js(J):a(3,J)*x(J)=b(3);sum(js(J):a(4,J)*x(J)=B(5);sum(js(J):a(6,J)*x(J)=b(6);data:c=30 20 50;b=430 410 420 300 70 240;a=1 2 1 3 0 2 1 4 0 1 1 1 0 1 0 0 0 1;end dataend最優(yōu)解 Global optimal solution found. Objective value: 12150.00 Infeasibilities: 0.000000

27、Total solver iterations: 4 Variable Value Reduced Cost B( 1) 430.0000 0.000000 B( 2) 410.0000 0.000000 B( 3) 420.0000 0.000000 B( 4) 300.0000 0.000000 B( 5) 70.00000 0.000000 B( 6) 240.0000 0.000000 C( 1) 30.00000 0.000000 C( 2) 20.00000 0.000000 C( 3) 50.00000 0.000000 X( 1) 0.000000 35.00000 X( 2)

28、 95.00000 0.000000 X( 3) 205.0000 0.000000 A( 1, 1) 1.000000 0.000000 A( 1, 2) 2.000000 0.000000 A( 1, 3) 1.000000 0.000000 A( 2, 1) 3.000000 0.000000 A( 2, 2) 0.000000 0.000000 A( 2, 3) 2.000000 0.000000 A( 3, 1) 1.000000 0.000000 A( 3, 2) 4.000000 0.000000 A( 3, 3) 0.000000 0.000000 A( 4, 1) 1.000000 0.000000 A( 4, 2) 1.000000 0.000000 A( 4, 3) 1.000000 0.0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論