




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、Chapter 11 Content-based Image Retrieval(CBIR)Think AboutWhat is content-based image retrieval? What does the term “content” mean?What are low level image retrieval, region based image retrieval, and semantic image retrieval respectively?From the historic overview, how has CBIR evolved?What does it
2、mean by multimedia information retrieval ? What Research Areas Are Involved In? Computer vision, pattern recognition, image processing, data mining, machine learning, human-computer interaction, artificial intelligence Application: digital museum/libraries, safety of society, image/video copy detect
3、ion, GIS, medicine, education, entertainment, WWW, to name just a fewDigital Image Retrieval Search for digital images in large databases First generation: laborious, subjectiveMetadata (captions or keywords) Image Second generation (content-based): objectiveImage contents Image Current way (semanti
4、c): subjective + objectiveImage contents + semantic feature Image Our way: Image contents + semantic feature + keywords/captions Image Semantic gapWhat Is Content-based Image Retrieval “Content-based” means that the search will analyze the actual contents of the image. The term “content” in this con
5、text might refer colors, shapes, textures, or any other information that can be derived from the image itselfLow Level Image Retrieval Color Examining images based on the colors they contain is one of the most widely used techniques because it does not depend on image size or orientation. Color sear
6、ches will usually involve comparing color histograms, though this is not the only technique in practiceColor SpaceRGBLightness (亮度,即明暗)Hue(色調(diào),即光的顏色)Saturation(飽和度,即顏色的深淺)Chrominance (色度)65.738129.05725.06416137.94574.494112.439128256112.43994.15418.285128YRCbGCrBLow Level Image Retrieval Shape Shape
7、 does not refer to the shape of an image but to the shape of a particular region that is being sought out. Shapes will often be determined first applying segmentation or edge detection to an image. In some cases accurate shape detection will require human intervention because methods like segmentati
8、on are very difficult to completely automate.Edge Detection Low Level Image Retrieval Texture Texture measures look for visual patterns in images and how they are spatially defined. Textures are represented by texels which are then placed into a number of sets, depending on how many textures are det
9、ected in the image. These sets not only define the texture, but also where in the image the texture is locatedTexture Texture Coarseness (粗糙度) Contrast (對比度) Directionality(方向度) Linearity(線性度) Regularity(規(guī)整度) Roughness(粗略度)Region Based Image Retrieval Semantic Image Retrieval Human judgement of imag
10、e similarity is subjective. Therefore latest research focus on deriving semantic features using machine learning techniques to narrow down the semantic gapSemantic ModelLow level features (mixture of color, shape, texture, e.g. red circle)Objects, e.g. a manSpatial relationship between the objects,
11、e.g. a man in front of the houseEnvironment, e.g. sandAction, e.g. runFeeling, e.g. happySemantic ModelLow level features: color, shapeObjects: person, ball Spatial relationship: persons positionsEnvironment: sand, blue skyAction: play volleyballFeeling: relax, happySemantic Feature Retrieval Automa
12、tic image annotation Build a semantic spaceContent-based Image Retrieval From the above historic overview, it can be seen how CBIR has evolved from low level image retrieval to region based image retrieval and to semantic image retrievalDatabasesStructure of CBIRDigital imagesFeature extractionUserQ
13、uery interfaceSearch engineImage databaseFeature databaseKnowledge databaseImage Retrieval Methods Query by external pictorial example Brand search, finger mark search Query by internal pictorial example Query by sketch Keywords/captions Combination of the above methods EvaluationbaaPcaaR d bc adbbFPrecisionRecallPVREffectivenessEfficiencyFlexibilityA User Interface of Image Retrieval Future Dir
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大數(shù)據(jù)助力教育個性化與精準化
- 心理分析與現(xiàn)代教育技術(shù)的融合
- 教育與科技的結(jié)合教學輔助型教育機器人研究
- 未來教育視域下的技術(shù)美學與空間設計
- 品牌數(shù)字營銷戰(zhàn)略下的多平臺聯(lián)動運營策略
- 教育領(lǐng)域的大數(shù)據(jù)技術(shù)應用及未來趨勢分析報告
- 全球醫(yī)藥市場2025年創(chuàng)新藥物研發(fā)管線布局策略報告
- 全球鈾礦資源分布特點及2025年核能產(chǎn)業(yè)技術(shù)創(chuàng)新與產(chǎn)業(yè)協(xié)同研究報告
- 公交優(yōu)先戰(zhàn)略與2025年城市交通擁堵治理的公共交通優(yōu)先政策實施保障研究報告
- Carbonic-anhydrase-inhibitor-32-生命科學試劑-MCE
- 永州斑馬樂器廠薪酬方案優(yōu)化設計
- 太原飲食文化的國際傳播與旅游推動
- 實驗室生物安全整改措施
- 下肢深靜脈血栓形成介入治療護理實踐指南(2025版)解讀課件
- 2025年湖南金葉煙草薄片有限責任公司招聘筆試參考題庫含答案解析
- 20以內(nèi)加減法口算題卡(3000道打印版)每日100道幼小銜接
- 《經(jīng)皮椎體成形術(shù)》課件
- 工業(yè)生產(chǎn)設備投資資金使用計劃
- 數(shù)字文化空間創(chuàng)意設計-深度研究
- 老年人慢性病管理方案
- 2023《廣東省建設工程消防設計審查疑難問題解析》
評論
0/150
提交評論