版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、會計學(xué)1高一數(shù)學(xué)知識總結(jié)直線和圓復(fù)習(xí)課新人高一數(shù)學(xué)知識總結(jié)直線和圓復(fù)習(xí)課新人教教A必修必修三角函數(shù)值三角函數(shù)值sincostan045309060135120150180000001111 1 22222222 21211221 3223 23233333 33 不存不存在在back第1頁/共38頁 當(dāng)直線當(dāng)直線 l 與與x軸相交時,我們?nèi)≥S相交時,我們?nèi)軸作為基準(zhǔn)軸作為基準(zhǔn),x軸正向與直線軸正向與直線 l 向上方向之間所成的角向上方向之間所成的角 叫叫做做直線直線 l 的傾斜角的傾斜角(angle of inclination) xyOl 當(dāng)直線當(dāng)直線l與與x軸平行或重合時軸平行或重合時,
2、規(guī)定它的傾斜角為,規(guī)定它的傾斜角為 .0直線的傾斜角直線的傾斜角 的取值范圍為:的取值范圍為:.1800第2頁/共38頁 直線的傾斜程度與傾斜角有什么關(guān)系?直線的傾斜程度與傾斜角有什么關(guān)系? 平面直角坐標(biāo)系中每一條直線都有確定的傾斜平面直角坐標(biāo)系中每一條直線都有確定的傾斜角,角,傾斜程度不同的直線有不同的傾斜角,傾斜程度不同的直線有不同的傾斜角,度相同的直線其傾斜角相同度相同的直線其傾斜角相同 傾斜程傾斜程xyOlll 已知直線上的一個點不能已知直線上的一個點不能確定一條直線的位置;同樣已確定一條直線的位置;同樣已知直線的傾斜角知直線的傾斜角也不能確定也不能確定一條直線的位置一條直線的位置 但
3、是,但是,直線上的一個直線上的一個點點和和這條直線的這條直線的傾斜角傾斜角可以唯一確可以唯一確定一條直線定一條直線第3頁/共38頁 一條直線的傾斜角的正切值叫做這一條直線的傾斜角的正切值叫做這條條直線的斜率直線的斜率(slope). 傾斜角是傾斜角是 的直線有斜率嗎?的直線有斜率嗎?90 傾斜角是傾斜角是 的直線的斜率不存在的直線的斜率不存在90如果使用如果使用“傾斜角傾斜角”這個概念,那么這里的這個概念,那么這里的“坡坡度(比)度(比)”實際就是實際就是“傾斜角傾斜角的正切的正切”通常用小寫字母通常用小寫字母k表示,即表示,即 tan k)90( 第4頁/共38頁 如:傾斜角如:傾斜角 時,
4、直線的斜率時,直線的斜率 45 . 145tan k當(dāng)當(dāng) 為銳角時,為銳角時, .tan)180tan( 如:傾斜角為如:傾斜角為 時,由時,由135 145tan135tan k即這條直線的斜率為即這條直線的斜率為. 1 傾斜角傾斜角不是不是90的直線都有斜率,并且傾的直線都有斜率,并且傾斜角不同,直線的斜率也不同因此,可以用斜斜角不同,直線的斜率也不同因此,可以用斜率表示直線的傾斜程度率表示直線的傾斜程度第5頁/共38頁直線的傾斜角與斜率直線的傾斜角與斜率 在平面直角坐標(biāo)系中在平面直角坐標(biāo)系中, ,當(dāng)直線當(dāng)直線l l與與x x軸相交軸相交時,取時,取x x軸作為基準(zhǔn),軸作為基準(zhǔn), x x軸
5、正向與直線軸正向與直線l l向上方向上方向之間所成的角向之間所成的角 叫做直線叫做直線l l的的傾斜角傾斜角. .當(dāng)直線和當(dāng)直線和x x軸平行或重合時,我們規(guī)定直線的軸平行或重合時,我們規(guī)定直線的傾斜角為傾斜角為0 00 0. .00180,0 傾斜角不是傾斜角不是90900 0的直線,它的傾斜角的正切叫做的直線,它的傾斜角的正切叫做這條直線的這條直線的斜率斜率,常用,常用k k來表示來表示. . tan k)90( 傾斜角是傾斜角是 的直線的斜率不存在的直線的斜率不存在90第6頁/共38頁傾斜角與斜率的關(guān)系傾斜角與斜率的關(guān)系 已知直線傾斜角求斜率:已知直線傾斜角求斜率: 為銳角時,為銳角時,
6、k0; k 越大越大,直線傾斜度越大直線傾斜度越大 為鈍角時,為鈍角時,k0 時時, 為銳角;為銳角; kr r2 2時時, ,點點M M在圓在圓C C外外; ;(x(x0 0-a)-a)2 2+(y+(y0 0-b)-b)2 2=r r2 2時時, ,點點M M在圓在圓C C上上; ;(x(x0 0-a)-a)2 2+(y+(y0 0-b)-b)2 2r r2 2時時, ,點點M M在圓在圓C C內(nèi)內(nèi). .第23頁/共38頁圓的圓的一般方程一般方程:0 0F FE Ey yD Dx xy yx x2 22 2為為半半徑徑的的圓圓4 4F FE ED D2 21 1)為為圓圓心心,2 2E E
7、,2 2D D(0 0) ),方方程程表表示示以以4 4F FE E( (當(dāng)當(dāng)D D2 22 22 22 2圓圓的的一一般般方方程程的的特特點點:0 04 4F FE E( (3 3) )D D(2 2)沒沒有有x xy y項項的的系系數(shù)數(shù)相相同同,不不等等于于0 0與與y y(1 1)x x2 22 22 22 2第24頁/共38頁當(dāng)當(dāng)D=0D=0,E=0E=0或或F=0F=0時,時,圓圓 的位置分別的位置分別有什么特點?有什么特點? 220 xyDxEyFC Cx xo oy yC Cx xo oy yC Cx xo oy yD=0D=0E=0E=0F=0F=0第25頁/共38頁有無交點,
8、有幾個有無交點,有幾個直線直線l與圓與圓C的方程組成的的方程組成的方程組是否有解,有幾個方程組是否有解,有幾個解解判斷圓判斷圓C的圓心到直線的圓心到直線l的距的距離離d與圓的半徑與圓的半徑r的關(guān)系(大的關(guān)系(大于、小于、等于)于、小于、等于)判斷直線與判斷直線與圓的位置關(guān)圓的位置關(guān)系系第26頁/共38頁平面幾何中,直線與圓有三種位置關(guān)系:平面幾何中,直線與圓有三種位置關(guān)系:(1 1)直線與圓相交,有兩個公共點;)直線與圓相交,有兩個公共點;(1 1)(2 2)直線與圓相切,只有一個公共點;)直線與圓相切,只有一個公共點;(2 2)(3 3)直線與圓相離,沒有公共點)直線與圓相離,沒有公共點(3
9、)第27頁/共38頁000在平面幾何中,判斷直線與圓的位置關(guān)系? 第28頁/共38頁在平面幾何中,判斷直線與圓的位置關(guān)系? drdrdrd dr r第29頁/共38頁代數(shù)法:1.將直線方程與圓方程聯(lián)立成方程組;2.通過消元,得到一個一元二次方程;3.求出其判別式的值;4.比較與0的大小關(guān)系:若0,則直線與圓相交;若0,則直線與圓相切;若0,則直線與圓相離第30頁/共38頁幾何法:1.把直線方程化為一般式,并求出圓心坐標(biāo)和半徑r;2.利用點到直線的距離公式求圓心到直線的距離d;若d dr r,則直線與圓相離相離;若d dr r,則直線與圓相切相切;若d dr r,則直線與圓相交相交3.比較d與r
10、的大小關(guān)系:第31頁/共38頁(1) 利用兩個圓的方程組成方程組的實數(shù)解的個數(shù):nrdycxrbyax的解的個數(shù)為設(shè)方程組 )()()()(22222122n=0兩個圓兩個圓相離相離0課堂總結(jié)課堂總結(jié)第32頁/共38頁 設(shè)兩圓的半徑分別為R和r (Rr),圓心距為d ,那么: (1)兩圓外離 dR+r (2)兩圓外切 d=R+r(3)兩圓相交 R-rdR+r(4)兩圓內(nèi)切 d=R-r (5)兩圓內(nèi)含 dR-r課堂總結(jié)課堂總結(jié)第33頁/共38頁CDBACOAByzxxoy平面上的點豎坐標(biāo)為平面上的點豎坐標(biāo)為0yoz平面上的點橫坐標(biāo)為平面上的點橫坐標(biāo)為0 xoz平面上的點縱坐標(biāo)為平面上的點縱坐標(biāo)為
11、0 x軸上的點縱坐標(biāo)豎坐標(biāo)為軸上的點縱坐標(biāo)豎坐標(biāo)為0z軸上的點橫坐標(biāo)縱坐標(biāo)為軸上的點橫坐標(biāo)縱坐標(biāo)為0y軸上的點橫坐標(biāo)豎坐標(biāo)為軸上的點橫坐標(biāo)豎坐標(biāo)為0一、坐標(biāo)平面內(nèi)的點一、坐標(biāo)平面內(nèi)的點二、坐標(biāo)軸上的點二、坐標(biāo)軸上的點第34頁/共38頁練習(xí)練習(xí)1:點點M(x,y,z)是空間直角坐標(biāo)系是空間直角坐標(biāo)系Oxyz中的一點,寫出滿足中的一點,寫出滿足下列條件的點的坐標(biāo)下列條件的點的坐標(biāo)(1)與點與點M關(guān)于關(guān)于x軸對稱的點軸對稱的點(2)與點與點M關(guān)于關(guān)于y軸對稱的點軸對稱的點(3)與點與點M關(guān)于關(guān)于z軸對稱的點軸對稱的點(4)與點與點M關(guān)于原點對稱的點關(guān)于原點對稱的點(5)與點與點M關(guān)于關(guān)于xOy平面對稱的點平面對稱的點(6)與點與點M關(guān)于關(guān)于xOz平面對稱的點平面對稱的點(7)與點與點M關(guān)于關(guān)于yOz平面對稱的點平面對稱的點(x,-y,-z)(-x,y,-z)(-x,-y,z)(-x,-y,-z)(x,y,-z)(x,-y,z)(-x,y,z)MOyzx第35頁/共38頁空間兩點間的距離公式為: .21221221221zzyyxxMM 第36頁/共38頁
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024股東合作合同范本2
- 2024的重慶市計算機系統(tǒng)集成合同示范文本(標(biāo)準(zhǔn)版)
- 2024射擊器械設(shè)備供貨合同
- 2025屆高考生物二輪復(fù)習(xí)大板塊練生物與環(huán)境含解析
- 防抱死制動系統(tǒng)課程設(shè)計
- 螃蟹夾球游戲課程設(shè)計
- 趣味拼音教學(xué)課程設(shè)計
- 制鞋業(yè)市場創(chuàng)新發(fā)展策略與模式研究與總結(jié)與推廣考核試卷
- 節(jié)假日安全宣傳信息傳播渠道拓展策略考核試卷
- 紡織機械的邊緣計算服務(wù)發(fā)展考核試卷
- 施工工期計算器
- 木棧道安裝檢驗批質(zhì)量驗收記錄表
- TBM豆礫石回填灌漿施工方案十八局修改8-275
- PLC課程設(shè)計:YA32—200四柱式萬能液壓機系統(tǒng)課件
- 山東省高中英語課堂教學(xué)基本要求-2021版 附件
- 緊固件國家標(biāo)準(zhǔn)目錄
- 建筑工程資料管理標(biāo)準(zhǔn)(吉林省地方標(biāo)準(zhǔn)db22t4982010)
- 初二藏文 (2)
- 節(jié)約型公共機構(gòu)示范單位評價標(biāo)準(zhǔn)
- 綠色(環(huán)保)施工方案(DOC)
- 在企業(yè)高管研修班結(jié)業(yè)典禮上的講話
評論
0/150
提交評論