【解析版】河南省鄭州市2021年中考數(shù)學二模試卷_第1頁
【解析版】河南省鄭州市2021年中考數(shù)學二模試卷_第2頁
【解析版】河南省鄭州市2021年中考數(shù)學二模試卷_第3頁
【解析版】河南省鄭州市2021年中考數(shù)學二模試卷_第4頁
【解析版】河南省鄭州市2021年中考數(shù)學二模試卷_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、河南省鄭州市2021年中考數(shù)學二模試卷一、選擇題每題3分,共24分12021的倒數(shù)是 A 2021 B C D 20212PM2.5是指大氣中直徑0.0000025米的顆粒物,將0.0000025用科學記數(shù)法表示為 A 2.5107 B 2.5106 C 25107 D 0.251053如圖,從左面觀察這個立體圖形,能得到的平面圖形是 A B C D 4如圖,直線lm,等邊三角形ABC的頂點B在直線m上,1=25,那么2的度數(shù)為 A 35 B 25 C 30 D 455如圖是交警在一個路口統(tǒng)計的某個時段來往車輛的車速單位:千米/時情況那么這些車的車速的眾數(shù)、中位數(shù)分別是 A 8,6 B 8,5

2、 C 52,53 D 52,526如圖,菱形ABCD的對角線AC,BD的長分別為6,8,AEBC,垂足為點E,那么AE的長是 A B 2 C D 7如圖,矩形ABCD中,AB=5,AD=12,將矩形ABCD按如下圖的方式在直線l上進行兩次旋轉(zhuǎn),使點B旋轉(zhuǎn)到B點,那么點B在兩次旋轉(zhuǎn)過程中經(jīng)過的路徑的長是 A 25 B C D 8如圖,在四邊形ABCD中,ADBC,A=60,動點P從A點出發(fā),以1cm/s的速度沿著ABCD的方向向點D移動,PAD的面積S單位:cm2與點P移動的時間t單位:s的函數(shù)如圖所示,那么點P從開始移動到停止共用時 A 8秒 B 4+秒 C 4+3秒 D 4+秒二、填空題每題

3、3分,共21分9計算:=10如圖,四邊形ABCD內(nèi)接于圓O,假設(shè)B=77,那么D=11假設(shè)關(guān)于x的一元二次方程x2+2x+a=0有實數(shù)根,那么a的取值范圍是12如圖,RtABC中,ACB=90,AC=3cm,BC=6cm,以斜邊AB上的一點O為圓心所作的半圓分別與AC、BC相切于點D,E,那么圓O的半徑為cm13在一個口袋中有4個完全相同的小球,它們的標號分別為1,2,3,4,一人從中隨機摸出一球記下標號后放回,再從中隨機摸出一個小球記下標號,那么兩次摸出的小球的標號之和大于4的概率是14如圖,四邊形ABCD中,ADBC,B=90,E為AB上一點,分別以ED,EC為折痕將兩個角A,B向內(nèi)折起,

4、點A,B恰好落在CD邊的點F處假設(shè)AD=5,BC=9,那么EF=15如圖,在一張長為8cm,寬為6cm的矩形紙片上,現(xiàn)要剪下一個腰長為5cm的等腰三角形要求:等腰三角形的一個頂點與矩形的一個頂點重合,其余的兩個頂點在矩形的邊上那么剪下的等腰三角形的面積為cm2三、解答題此題共8道小題,共75分16先化簡,再從2x3中選一個適宜的整數(shù)代入求值17我市民營經(jīng)濟持續(xù)開展,2021年城鎮(zhèn)民營企業(yè)就業(yè)人數(shù)突破20萬為了解城鎮(zhèn)民營企業(yè)員工每月的收入狀況,統(tǒng)計局對全市城鎮(zhèn)民營企業(yè)員工2021年月平均收入隨機抽樣調(diào)查,將抽樣的數(shù)據(jù)按“2000元以內(nèi)、“2000元4000元、“4000元6000元和“6000元

5、以上分為四組,進行整理,分別用A,B,C,D表示,得到以下兩幅不完整的統(tǒng)計圖由圖中所給出的信息解答以下問題:1本次抽樣調(diào)查的員工有人,在扇形統(tǒng)計圖中x的值為,表示“月平均收入在2000元以內(nèi)的局部所對應(yīng)扇形的圓心角的度數(shù)是;將不完整的條形圖補充完整,并估計我市2021年城鎮(zhèn)民營企業(yè)20萬員工中,每月的收入在“2000元4000元的約多少人?3統(tǒng)計局根據(jù)抽樣數(shù)據(jù)計算得到,2021年我市城鎮(zhèn)民營企業(yè)員工月平均收入為4872元,請你結(jié)合上述統(tǒng)計的數(shù)據(jù),談一談用平均數(shù)反映月收入情況是否合理?18如圖,分別以RtABC的直角邊AC和斜邊AB向外作等邊ACD、等邊ABE,BAC=30,BC=1,EFAB,

6、垂足為F,連結(jié)DF1線段EF是多少?答:,請寫出求解過程;請判斷四邊形ADFE的形狀,并說明理由19大河網(wǎng)報道“鄭州東風渠再添4座新橋,如圖,某座橋的兩端位于A,B兩點,小華為了測量A、B之間的河寬,在垂直于橋AB的直線型道路l上測得如下數(shù)據(jù):BDA=76.1,BCA=68.2,CD=24米求AB的長精確到1米參考數(shù)據(jù):sin76.10.97,cos76.10.24,tan76.14.0;sin68.20.93,cos68.20.37,tan68.22.520如圖,一次函數(shù)y=kx+b的圖象l與坐標軸分別交于點E、F,與雙曲線y=x0交于點P1,n,且F是PE的中點1求直線l的解析式;假設(shè)直線

7、x=a與l交于點A,與雙曲線交于點B不同于A,問a為何值時,PA=PB?21我市正大力倡導垃圾分類“,第一季度某企業(yè)按A類垃圾處理費25元/噸、B類垃圾處理費16元/噸的收費標準,共支付垃圾處理費520元從4月起,收費標準上調(diào)為:A類垃圾處理費100元/噸,B類垃圾處理費30元/噸假設(shè)該企業(yè)第二季度需要處理的A類,B類垃圾的數(shù)量與第一季度相同,就要多支付垃圾處理費880元1該企業(yè)第一季度處理的兩類垃圾各多少噸?該企業(yè)方案第二季度將上述兩種垃圾處理總量減少到24噸,且B類垃圾處理量不超過A類垃圾處理量的3倍,該企業(yè)第二季度最少需要支付這兩種垃圾處理費共多少元?22在正方形ABCD中,對角線AC,

8、BD交于點O,點P在線段BC上不含點B,BPE=ACB,PE交BO于點E,過點B作BFPE,垂足為F,交AC于點G1當點P與點C重合時如圖1求證:BOGPOE;通過觀察、測量、猜測:=,并結(jié)合圖2證明你的猜測;3把正方形ABCD改為菱形,其他條件不變?nèi)鐖D3,假設(shè)ACB=,求的值用含的式子表示23如圖,矩形OABC的兩邊在坐標軸上,連接AC,拋物線y=x24x2經(jīng)過A,B兩點1求A點坐標及線段AB的長;假設(shè)點P由點A出發(fā)以每秒1個單位的速度沿AB邊向點B移動,1秒后點Q也由點A出發(fā)以每秒7個單位的速度沿AOCB的方向向點B移動,當其中一個點到達終點時另一個點也停止移動,點P的移動時間為t秒當PQ

9、AC時,求t的值;當PQAC時,對于拋物線對稱軸上一點H,當點H的縱坐標滿足條件時,HOQPOQ直接寫出答案河南省鄭州市2021年中考數(shù)學二模試卷參考答案與試題解析一、選擇題每題3分,共24分12021的倒數(shù)是 A 2021 B C D 2021考點: 倒數(shù)分析: 根據(jù)倒數(shù)的定義可得2021的倒數(shù)是解答: 解:2021的倒數(shù)是應(yīng)選:C點評: 主要考查倒數(shù)的概念及性質(zhì)倒數(shù)的定義:假設(shè)兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù)2PM2.5是指大氣中直徑0.0000025米的顆粒物,將0.0000025用科學記數(shù)法表示為 A 2.5107 B 2.5106 C 25107 D 0.25105考點:

10、科學記數(shù)法表示較小的數(shù)專題: 常規(guī)題型分析: 絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a10n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定解答: 解:0.0000025=2.5106,應(yīng)選:B點評: 此題考查用科學記數(shù)法表示較小的數(shù),一般形式為a10n,其中1|a|10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定3如圖,從左面觀察這個立體圖形,能得到的平面圖形是 A B C D 考點: 簡單組合體的三視圖分析: 根據(jù)從左面看得到的圖形是左視圖,可得答案解答: 解;從左面看下面一個正方形,上面一個正方形,應(yīng)選

11、:A點評: 此題考查了簡單組合體的三視圖,從左面看得到的圖形是左視圖4如圖,直線lm,等邊三角形ABC的頂點B在直線m上,1=25,那么2的度數(shù)為 A 35 B 25 C 30 D 45考點: 平行線的性質(zhì)分析: 過C作CM直線l,根據(jù)等邊三角形性質(zhì)求出ACB=60,根據(jù)平行線的性質(zhì)求出1=MCB,2=ACM,即可求出答案解答: 解:過C作CM直線l,ABC是等邊三角形,ACB=60,過C作CM直線l,直線l直線m,直線l直線mCM,ACB=60,1=25,1=MCB=25,2=ACM=ACBMCB=6025=35應(yīng)選A點評: 此題考查的是平行線的性質(zhì),用到的知識點為:兩直線平行,內(nèi)錯角相等5

12、如圖是交警在一個路口統(tǒng)計的某個時段來往車輛的車速單位:千米/時情況那么這些車的車速的眾數(shù)、中位數(shù)分別是 A 8,6 B 8,5 C 52,53 D 52,52考點: 頻數(shù)率分布直方圖;中位數(shù);眾數(shù)專題: 計算題分析: 找出出現(xiàn)次數(shù)最多的速度即為眾數(shù),將車速按照從小到大順序排列,求出中位數(shù)即可解答: 解:根據(jù)題意得:這些車的車速的眾數(shù)52千米/時,車速分別為50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中間的為52,即中位數(shù)為52千米/時,那么這些車的車速的眾數(shù)、中位數(shù)分別是52,

13、52應(yīng)選:D點評: 此題考查了頻數(shù)率分布直方圖,中位數(shù),以及眾數(shù),弄清題意是解此題的關(guān)鍵6如圖,菱形ABCD的對角線AC,BD的長分別為6,8,AEBC,垂足為點E,那么AE的長是 A B 2 C D 考點: 菱形的性質(zhì)分析: 根據(jù)菱形的性質(zhì)得出BO、CO的長,在RTBOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BCAE,可得出AE的長度解答: 解:四邊形ABCD是菱形,CO=AC=3,BO=BD=4,AOBO,BC=5cm,S菱形ABCD=68=24,S菱形ABCD=BCAE,BCAE=24,AE=,應(yīng)選D點評: 此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩

14、種表示方法,及菱形的對角線互相垂直且平分7如圖,矩形ABCD中,AB=5,AD=12,將矩形ABCD按如下圖的方式在直線l上進行兩次旋轉(zhuǎn),使點B旋轉(zhuǎn)到B點,那么點B在兩次旋轉(zhuǎn)過程中經(jīng)過的路徑的長是 A 25 B C D 考點: 弧長的計算;矩形的性質(zhì);旋轉(zhuǎn)的性質(zhì)分析: 連接BD,BD,首先根據(jù)勾股定理計算出BD長,再根據(jù)弧長計算公式計算出,的長,然后再求和計算出點B在兩次旋轉(zhuǎn)過程中經(jīng)過的路徑的長即可解答: 解:連接BD,BD,AB=5,AD=12,BD=13,的長:=,的長:=6,點B在兩次旋轉(zhuǎn)過程中經(jīng)過的路徑的長是:+6=,應(yīng)選:C點評: 此題主要考查了弧長計算,以及勾股定理的應(yīng)用,關(guān)鍵是掌

15、握弧長計算公式l=8如圖,在四邊形ABCD中,ADBC,A=60,動點P從A點出發(fā),以1cm/s的速度沿著ABCD的方向向點D移動,PAD的面積S單位:cm2與點P移動的時間t單位:s的函數(shù)如圖所示,那么點P從開始移動到停止共用時 A 8秒 B 4+秒 C 4+3秒 D 4+秒考點: 動點問題的函數(shù)圖象分析: 根據(jù)圖判斷出AB、BC的長度,過點B作BEAD于點E,然后求出梯形ABCD的高BE,再根據(jù)t=2時PAD的面積求出AD的長度,過點C作CFAD于點F,然后求出DF的長度,利用勾股定理列式求出CD的長度,然后求出AB、BC、CD的和,再根據(jù)時間=路程速度計算即可得解解答: 解:由圖可知,t

16、在2到4秒時,PAD的面積不發(fā)生變化,在AB上運動的時間是2秒,在BC上運動的時間是42=2秒,動點P的運動速度是1cm/s,AB=2cm,BC=2cm,過點B作BEAD于點E,過點C作CFAD于點F,那么四邊形BCFE是矩形,BE=CF,BC=EF=2cm,A=60,BE=ABsin60=2=,AE=ABcos60=2=1,ADBE=3,即AD=3,解得AD=6cm,DF=ADAEEF=612=3,在RtCDF中,CD=2,所以,動點P運動的總路程為AB+BC+CD=2+2+2=4+2,動點P的運動速度是1cm/s,點P從開始移動到停止移動一共用了4+21=4+2秒答:點P從開始移動到停止移

17、動一共用了4+2秒應(yīng)選:B點評: 此題考查了動點問題的函數(shù)圖象,根據(jù)圖的三角形的面積的變化情況判斷出AB、BC的長度是解題的關(guān)鍵,根據(jù)梯形的問題中,經(jīng)常作過梯形的上底邊的兩個頂點的高線作出輔助線也很關(guān)鍵二、填空題每題3分,共21分9計算:=0考點: 實數(shù)的運算專題: 計算題分析: 原式第一項利用立方根定義計算,第二項利用絕對值的代數(shù)意義化簡,即可得到結(jié)果解答: 解:原式=2+2=0故答案為:0點評: 此題考查了實數(shù)的運算,熟練掌握運算法那么是解此題的關(guān)鍵10如圖,四邊形ABCD內(nèi)接于圓O,假設(shè)B=77,那么D=103考點: 圓內(nèi)接四邊形的性質(zhì)分析: 根據(jù)圓內(nèi)接四邊形對角互補,直接求出即可解答:

18、 解:圓內(nèi)接四邊形ABCD中,B=77,D=18077=103故答案為:103點評: 此題主要考查了圓內(nèi)接四邊形的性質(zhì),靈活應(yīng)用圓內(nèi)接四邊形的性質(zhì)是解決問題的關(guān)鍵11假設(shè)關(guān)于x的一元二次方程x2+2x+a=0有實數(shù)根,那么a的取值范圍是a1考點: 根的判別式分析: 在與一元二次方程有關(guān)的求值問題中,必須滿足以下條件:1二次項系數(shù)不為零;在有實數(shù)根下必須滿足=b24ac0解答: 解:因為關(guān)于x的一元二次方程有實根,所以=b24ac=44a0,解之得a1故答案為a1點評: 此題考查了一元二次方程ax2+bx+c=0a0,a,b,c為常數(shù)根的判別式當0,方程有兩個不相等的實數(shù)根;當=0,方程有兩個相

19、等的實數(shù)根;當0,方程沒有實數(shù)根12如圖,RtABC中,ACB=90,AC=3cm,BC=6cm,以斜邊AB上的一點O為圓心所作的半圓分別與AC、BC相切于點D,E,那么圓O的半徑為2cm考點: 切線的性質(zhì);相似三角形的判定與性質(zhì)分析: 連接OD、OE,根據(jù)條件證明四邊形CDOE為正方形,得到OD=CD,證明ODBC,得到=,求出OD的長,得到答案解答: 解:連接OD、OE,ACB=90,AC=3cm,BC=6cm,AB=3,AC、CB為O的切線,ODAC,OEBC,又ACB=90,四邊形CDOE為矩形,CD=CE,四邊形CDOE為正方形,OD=CD,ODAC,ACB=90,ODBC,=,=O

20、D=2,故答案為:2點評: 此題考查的是切線的性質(zhì),掌握切線的性質(zhì):圓的切線垂直于過切點的半徑是解題的關(guān)鍵,注意:平行線分線段成比例定理的正確運用13在一個口袋中有4個完全相同的小球,它們的標號分別為1,2,3,4,一人從中隨機摸出一球記下標號后放回,再從中隨機摸出一個小球記下標號,那么兩次摸出的小球的標號之和大于4的概率是考點: 列表法與樹狀圖法分析: 首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出的小球的標號之和大于4的情況,再利用概率公式即可求得答案解答: 解:畫樹狀圖得:共有16種等可能的結(jié)果,兩次摸出的小球的標號之和大于4的有10種情況,兩次摸出的小球的標號之和大

21、于4的概率是:=點評: 此題考查了列表法或樹狀圖法求概率用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比14如圖,四邊形ABCD中,ADBC,B=90,E為AB上一點,分別以ED,EC為折痕將兩個角A,B向內(nèi)折起,點A,B恰好落在CD邊的點F處假設(shè)AD=5,BC=9,那么EF=3考點: 翻折變換折疊問題;勾股定理分析: 如圖,首先運用翻折變換的性質(zhì)求出CF、DF的長度,證明DEC=90;運用射影定理求出EF的長度,即可解決問題解答: 解:如圖,由翻折變換的性質(zhì)得:CF=CB=9,DF=DA=5,EFC=B=90;AED=FED,BEC=FEC,DEC=180=90,即EFCD,由射影定理得:EF

22、2=CFDF,EF=3,故答案為3點評: 該題主要考查了翻折變換的性質(zhì)、射影定理等幾何知識點及其應(yīng)用問題;解題的關(guān)鍵是靈活運用翻折變換的性質(zhì)、射影定理等幾何知識點來分析、判斷、推理或解答15如圖,在一張長為8cm,寬為6cm的矩形紙片上,現(xiàn)要剪下一個腰長為5cm的等腰三角形要求:等腰三角形的一個頂點與矩形的一個頂點重合,其余的兩個頂點在矩形的邊上那么剪下的等腰三角形的面積為或5或10cm2考點: 作圖應(yīng)用與設(shè)計作圖專題: 計算題;壓軸題分析: 因為等腰三角形腰的位置不明確,所以分1腰長在矩形相鄰的兩邊上,一腰在矩形的寬上,3一腰在矩形的長上,三種情況討論1AEF為等腰直角三角形,直接利用面積公

23、式求解即可;先利用勾股定理求出AE邊上的高BF,再代入面積公式求解;3先求出AE邊上的高DF,再代入面積公式求解解答: 解:分三種情況計算:1當AE=AF=5厘米時,SAEF=AEAF=55=厘米2,當AE=EF=5厘米時,如圖BF=2厘米,SAEF=AEBF=52=5厘米2,3當AE=EF=5厘米時,如圖DF=4厘米,SAEF=AEDF=54=10厘米2故答案為:,5,10點評: 此題主要考查矩形的角是直角的性質(zhì)和勾股定理的運用,要根據(jù)三角形的腰長的不確定分情況討論三、解答題此題共8道小題,共75分16先化簡,再從2x3中選一個適宜的整數(shù)代入求值考點: 分式的化簡求值分析: 先根據(jù)分式混合運

24、算的法那么把原式進行化簡,再選出適宜的x的值代入進行計算即可解答: 解:原式=,當x=2時,原式=點評: 此題考查的是分式的化簡求值,熟知分式混合運算的法那么是解答此題的關(guān)鍵17我市民營經(jīng)濟持續(xù)開展,2021年城鎮(zhèn)民營企業(yè)就業(yè)人數(shù)突破20萬為了解城鎮(zhèn)民營企業(yè)員工每月的收入狀況,統(tǒng)計局對全市城鎮(zhèn)民營企業(yè)員工2021年月平均收入隨機抽樣調(diào)查,將抽樣的數(shù)據(jù)按“2000元以內(nèi)、“2000元4000元、“4000元6000元和“6000元以上分為四組,進行整理,分別用A,B,C,D表示,得到以下兩幅不完整的統(tǒng)計圖由圖中所給出的信息解答以下問題:1本次抽樣調(diào)查的員工有500人,在扇形統(tǒng)計圖中x的值為14,

25、表示“月平均收入在2000元以內(nèi)的局部所對應(yīng)扇形的圓心角的度數(shù)是21.6;將不完整的條形圖補充完整,并估計我市2021年城鎮(zhèn)民營企業(yè)20萬員工中,每月的收入在“2000元4000元的約多少人?3統(tǒng)計局根據(jù)抽樣數(shù)據(jù)計算得到,2021年我市城鎮(zhèn)民營企業(yè)員工月平均收入為4872元,請你結(jié)合上述統(tǒng)計的數(shù)據(jù),談一談用平均數(shù)反映月收入情況是否合理?考點: 條形統(tǒng)計圖;用樣本估計總體;扇形統(tǒng)計圖;加權(quán)平均數(shù)專題: 圖表型分析: 1用B的人數(shù)除以所占的百分比,計算即可求出被調(diào)查的員工總?cè)藬?shù),求出B所占的百分比得到x的值,再求出A所占的百分比,然后乘以360計算即可得解;求出C的人數(shù),然后補全統(tǒng)計圖即可,再用總

26、人數(shù)乘以B所占的百分比計算即可得解;3根據(jù)眾數(shù)為2000元4000元判斷不合理解答: 解:1本次抽樣調(diào)查的員工人數(shù)是:=500人,D所占的百分比是:100%=14%,那么在扇形統(tǒng)計圖中x的值為14;“月平均收入在2000元以內(nèi)的局部所對應(yīng)扇形的圓心角的度數(shù)是360=21.6;故答案為:500,14,21.6;C的人數(shù)為:50020%=100,補全統(tǒng)計圖如下圖,“2000元4000元的約為:20萬60%=12萬;3用平均數(shù)反映月收入情況不合理由數(shù)據(jù)可以看出500名被調(diào)查者中有330人的月收入不超過4000元,月收入的平均數(shù)受高收入者和低收入者收入變化的影響較大,月收入的中位數(shù)幾乎不受上下兩端收入

27、變化的影響,因此,用月收入的中位數(shù)反映月收入水平更合理點評: 此題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵條形統(tǒng)計圖能清楚地表示出每個工程的數(shù)據(jù);扇形統(tǒng)計圖直接反映局部占總體的百分比大小18如圖,分別以RtABC的直角邊AC和斜邊AB向外作等邊ACD、等邊ABE,BAC=30,BC=1,EFAB,垂足為F,連結(jié)DF1線段EF是多少?答:,請寫出求解過程;請判斷四邊形ADFE的形狀,并說明理由考點: 平行四邊形的判定;等邊三角形的性質(zhì);含30度角的直角三角形分析: 1利用直角三角形中30所對邊與斜邊的關(guān)系結(jié)合勾股定理得出答案;利用等邊三

28、角形的性質(zhì)結(jié)合平行四邊形的判定方法得出答案解答: 解:1BAC=30,BC=1,AB=AE=BE=2,AC=,ABE是等邊三角形,EFAB,AF=BF=1,EF=;故答案為:四邊形ADFE是平行四邊形,理由:ABD和ACE都是等邊三角形,AD=BD=AB=2,AE=CE=AC=,ADB=BAD=DBA=CAE=AEC=ACE=60,DAB=EFA=90,EF=AD=,DAEF,四邊形ADFE是平行四邊形點評: 此題主要考查了等邊三角形的性質(zhì)以及平行四邊形的判定等知識,得出AC,EF的長是解題關(guān)鍵19大河網(wǎng)報道“鄭州東風渠再添4座新橋,如圖,某座橋的兩端位于A,B兩點,小華為了測量A、B之間的河

29、寬,在垂直于橋AB的直線型道路l上測得如下數(shù)據(jù):BDA=76.1,BCA=68.2,CD=24米求AB的長精確到1米參考數(shù)據(jù):sin76.10.97,cos76.10.24,tan76.14.0;sin68.20.93,cos68.20.37,tan68.22.5考點: 解直角三角形的應(yīng)用分析: 設(shè)AD=x米,那么AC=x+24米在RtABC中,根據(jù)三角函數(shù)得到AB=2.5x+24,在RtABD中,根據(jù)三角函數(shù)得到AB=4x,依此得到關(guān)于x的方程,進一步即可求解解答: 解:設(shè)AD=x米,那么AC=x+24米在RtABC中,tanBCA=,AB=ACtanBCA=2.5x+24在RtABD中,t

30、anBDA=,AB=ADtanBDA=4x2.5x+24=4x,解得x=40AB=4x=440=160答:AB的長約為160米點評: 此題考查了解直角三角形的應(yīng)用,主要是三角函數(shù)的根本概念及運算,關(guān)鍵是用數(shù)學知識解決實際問題20如圖,一次函數(shù)y=kx+b的圖象l與坐標軸分別交于點E、F,與雙曲線y=x0交于點P1,n,且F是PE的中點1求直線l的解析式;假設(shè)直線x=a與l交于點A,與雙曲線交于點B不同于A,問a為何值時,PA=PB?考點: 反比例函數(shù)與一次函數(shù)的交點問題分析: 1先由y=x0,求出點P的坐標,再根據(jù)F為PE中點,求出F的坐標,把P,F(xiàn)的坐標代入求出直線l的解析式;過P作PDAB

31、,垂足為點D,由A點的縱坐標為a+1,B點的縱坐標為,D點的縱坐標為2,列出方程求解即可解答: 解:1雙曲線y=x0經(jīng)過點P1,n,n=2,P1,2,F(xiàn)是PE的中點,OF=2=1,F(xiàn)0,1,設(shè)直線l的解析式為y=kx+b,解得,直線l的解析式為y=x+1;如圖,過P作PDAB,垂足為點D,PA=PB,點D為AB的中點,又由題意知A點的縱坐標為a+1,B點的縱坐標為,D點的縱坐標為2,得方程a+1=22,解得a1=2,a2=1舍去當a=2時,PA=PB點評: 此題主要考查了反比例函數(shù)與一次函數(shù)的交點,解題的重點是求出直線l的解析式21我市正大力倡導垃圾分類“,第一季度某企業(yè)按A類垃圾處理費25元

32、/噸、B類垃圾處理費16元/噸的收費標準,共支付垃圾處理費520元從4月起,收費標準上調(diào)為:A類垃圾處理費100元/噸,B類垃圾處理費30元/噸假設(shè)該企業(yè)第二季度需要處理的A類,B類垃圾的數(shù)量與第一季度相同,就要多支付垃圾處理費880元1該企業(yè)第一季度處理的兩類垃圾各多少噸?該企業(yè)方案第二季度將上述兩種垃圾處理總量減少到24噸,且B類垃圾處理量不超過A類垃圾處理量的3倍,該企業(yè)第二季度最少需要支付這兩種垃圾處理費共多少元?考點: 一元一次不等式的應(yīng)用;二元一次方程組的應(yīng)用分析: 1該企業(yè)第一季度處理的A類垃圾x噸,B類垃圾y噸,根據(jù)等量關(guān)系式:A垃圾處理費25元/噸A垃圾噸數(shù)+B處理費16元/

33、噸B垃圾噸數(shù)=總費用,列方程設(shè)該企業(yè)處理的A類垃圾a噸,根據(jù)B類垃圾處理量不超過A類垃圾處理量的3倍,列不等式求解解答: 解:1該企業(yè)第一季度處理的A類垃圾x噸,B類垃圾y噸,根由題意得,解得:,答:該企業(yè)第一季度處理的A類垃圾8噸,B類垃圾20噸;設(shè)該企業(yè)處理的A類垃圾a噸,由題意得,24a3a,解得:a6,那么總費用為:100a+30=720+70a,當a為6時,有最小值:1140元答:企業(yè)第二季度最少需要支付這兩種垃圾處理費共1140元點評: 此題考查了二元一次方程組和一元一次不等式的應(yīng)用,解答此題的關(guān)鍵是讀懂題意,找出適宜的等量關(guān)系和不等關(guān)系,列方程和不等式求解22在正方形ABCD中,

34、對角線AC,BD交于點O,點P在線段BC上不含點B,BPE=ACB,PE交BO于點E,過點B作BFPE,垂足為F,交AC于點G1當點P與點C重合時如圖1求證:BOGPOE;通過觀察、測量、猜測:=,并結(jié)合圖2證明你的猜測;3把正方形ABCD改為菱形,其他條件不變?nèi)鐖D3,假設(shè)ACB=,求的值用含的式子表示考點: 相似形綜合題專題: 壓軸題分析: 1由四邊形ABCD是正方形,P與C重合,易證得OB=OP,BOC=BOG=90,由同角的余角相等,證得GBO=EPO,那么可利用ASA證得:BOGPOE;首先過P作PMAC交BG于M,交BO于N,易證得BMNPENASA,BPFMPFASA,即可得BM=

35、PE,BF=BM那么可求得的值;3首先過P作PMAC交BG于點M,交BO于點N,由同理可得:BF=BM,MBN=EPN,繼而可證得:BMNPEN,然后由相似三角形的對應(yīng)邊成比例,求得的值解答: 1證明:四邊形ABCD是正方形,P與C重合,OB=OP,BOC=BOG=90,PFBG,PFB=90,GBO=90BGO,EPO=90BGO,GBO=EPO,在BOG和POE中,BOGPOEASA;解:猜測證明:如圖2,過P作PMAC交BG于M,交BO于N,PNE=BOC=90,BPN=OCBOBC=OCB=45,NBP=NPBNB=NPMBN=90BMN,NPE=90BMN,MBN=NPE,在BMN和

36、PEN中,BMNPENASA,BM=PEBPE=ACB,BPN=ACB,BPF=MPFPFBM,BFP=MFP=90在BPF和MPF中,BPFMPFASA BF=MF 即BF=BMBF=PE即;3解法一:如圖3,過P作PMAC交BG于點M,交BO于點N,BPN=ACB=,PNE=BOC=90,由同理可得:BF=BM,MBN=EPN,BNM=PNE=90,BMNPEN在RtBNP中,tan=,=tan即=tan=tan 解法二:如圖3,過P作PMAC交BG于點M,交BO于點N,BOPM,BPN=ACB=,BPE=ACB=,PFBM,EPN=MBN=EPN=BPE=設(shè)BF=x,PE=y,EF=m,

37、在RtPFB中,tan=,PF=PE+EF=y+m,x=y+mtan,在RtBFE中,tan=,m=xtan,x=y+xtantan,x=ytan+xtan2,1tan2x=ytan,即解法三:如圖3,過P作PMAC交BG于點M,交BO于點N,BNP=BOC=90EPN+NEP=90又BFPE,F(xiàn)BE+BEF=90BEF=NEP,F(xiàn)BE=EPN,PNAC,BPN=BCA=又BPE=ACB=,NPE=BPE=FBE=BPE=EPN=sinFPB=,BP=,cosEPN=,PN=PEcos,cosNPB=,PN=BPcos,EPcos=BPcos,EPcos=cos,點評: 此題考查了正方形的性質(zhì)、菱形的性質(zhì)、相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及三角函數(shù)的定義等知識此題綜合性很強,難度較大,注意準確作出輔助線是解此題的關(guān)鍵,注意數(shù)形結(jié)合思想的應(yīng)用23如圖,矩形OABC的兩邊在坐標軸上,連接AC,拋物線y=x24x2經(jīng)過A,B兩點1求A點坐標及線段AB的長;假

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論