版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、數(shù)字圖像處理作業(yè)-第三次1、 什么是圖像增強(qiáng)?常見(jiàn)算法有哪些?典型算法的程序?qū)崿F(xiàn),其優(yōu)缺點(diǎn)?結(jié)果對(duì)比。1.1圖像增強(qiáng)的定義為了改善視覺(jué)效果或者便于人和機(jī)器對(duì)圖像的理解和分析,根據(jù)圖像的特點(diǎn)或存在的問(wèn)題采取的簡(jiǎn)單改善方法或者加強(qiáng)特征的措施稱為圖像增強(qiáng)。一般情況下,圖像增強(qiáng)是按特定的需要突出一幅圖像中的某些信息,同時(shí)削弱或去除某些不需要的信息的處理方法,也是提高圖像質(zhì)量的過(guò)程。圖像增強(qiáng)的目的是使圖像的某些特性方面更加鮮明、突出,使處理后的圖像更適合人眼視覺(jué)特性或機(jī)器分析,以便于實(shí)現(xiàn)對(duì)圖像的更高級(jí)的處理和分析。圖像增強(qiáng)的過(guò)程往往也是一個(gè)矛盾的過(guò)程:圖像增強(qiáng)希望既去除噪聲又增強(qiáng)邊緣。但是,增強(qiáng)邊緣的同
2、時(shí)會(huì)同時(shí)增強(qiáng)噪聲,而濾去噪聲又會(huì)使邊緣在一定程度上模糊,因此,在圖像增強(qiáng)的時(shí)候,往往是將這兩部分進(jìn)行折中,找到一個(gè)好的代價(jià)函數(shù)達(dá)到需要的增強(qiáng)目的。傳統(tǒng)的圖像增強(qiáng)算法在確定轉(zhuǎn)換函數(shù)時(shí)常是基于整個(gè)圖像的統(tǒng)計(jì)量,如:ST轉(zhuǎn)換,直方圖均衡,中值濾波,微分銳化,高通濾波等等。這樣對(duì)應(yīng)于某些局部區(qū)域的細(xì)節(jié)在計(jì)算整幅圖的變換時(shí)其影響因?yàn)槠渲递^小而常常被忽略掉,從而局部區(qū)域的增強(qiáng)效果常常不夠理想,噪聲濾波和邊緣增強(qiáng)這兩者的矛盾較難得到解決。1.2 圖像增強(qiáng)的分類及方法圖像增強(qiáng)可分成兩大類:頻率域法和空間域法。前者把圖像看成一種二維信號(hào),對(duì)其進(jìn)行基于二維傅里葉變換的信號(hào)增強(qiáng)。采用低通濾波(即只讓低頻信號(hào)通過(guò))法
3、,可去掉圖中的噪聲;采用高通濾波法,則可增強(qiáng)邊緣等高頻信號(hào),使模糊的圖片變得清晰。具有代表性的空間域算法有局部求平均值法和中值濾波(取局部鄰域中的中間像素值)法等,它們可用于去除或減弱噪聲。圖像增強(qiáng)的方法是通過(guò)一定手段對(duì)原圖像附加一些信息或變換數(shù)據(jù),有選擇地突出圖像中感興趣的特征或者抑制(掩蓋)圖像中某些不需要的特征,使圖像與視覺(jué)響應(yīng)特性相匹配。在圖像增強(qiáng)過(guò)程中,不分析圖像降質(zhì)的原因,處理后的圖像不一定逼近原始圖像。圖像增強(qiáng)技術(shù)根據(jù)增強(qiáng)處理過(guò)程所在的空間不同,可分為基于空域的算法和基于頻域的算法兩大類?;诳沼虻乃惴ㄌ幚頃r(shí)直接對(duì)圖像灰度級(jí)做運(yùn)算,基于頻域的算法是在圖像的某種變換域內(nèi)對(duì)圖像的變換
4、系數(shù)值進(jìn)行某種修正,是一種間接增強(qiáng)的算法?;诳沼虻乃惴ǚ譃辄c(diǎn)運(yùn)算算法和鄰域去噪算法。點(diǎn)運(yùn)算算法即灰度級(jí)校正、灰度變換和直方圖修正等,目的或使圖像成像均勻,或擴(kuò)大圖像動(dòng)態(tài)范圍,擴(kuò)展對(duì)比度。鄰域增強(qiáng)算法分為圖像平滑和銳化兩種。平滑一般用于消除圖像噪聲,但是也容易引起邊緣的模糊。常用算法有均值濾波、中值濾波。銳化的目的在于突出物體的邊緣輪廓,便于目標(biāo)識(shí)別。常用算法有梯度法、算子、高通濾波、掩模匹配法、統(tǒng)計(jì)差值法等。 1.3 常用的圖像增強(qiáng)方法(1) 直方圖均衡化有些圖像在低值灰度區(qū)間上頻率較大,使得圖像中較暗區(qū)域中的細(xì)節(jié)看不清楚。這時(shí)可以通過(guò)直方圖均衡化將圖像的灰度范圍分開(kāi),并且讓灰度頻率較小的灰
5、度級(jí)變大,通過(guò)調(diào)整圖像灰度值的動(dòng)態(tài)范圍,自動(dòng)地增加整個(gè)圖像的對(duì)比度,使圖像具有較大的反差,細(xì)節(jié)清晰。(2) 對(duì)比度增強(qiáng)法有些圖像的對(duì)比度比較低,從而使整個(gè)圖像模糊不清。這時(shí)可以按一定的規(guī)則修改原來(lái)圖像的每一個(gè)象素的灰度,從而改變圖像灰度的動(dòng)態(tài)范圍。(3) 平滑噪聲有些圖像是通過(guò)掃描儀掃描輸入、或傳輸通道傳輸過(guò)來(lái)的。圖像中往往包含有各種各樣的噪聲。這些噪聲一般是隨機(jī)產(chǎn)生的,因此具有分布和大小不規(guī)則性的特點(diǎn)。這些噪聲的存在直接影響著后續(xù)的處理過(guò)程,使圖像失真。圖像平滑就是針對(duì)圖像噪聲的操作,其主要作用是為了消除噪聲,圖像平滑的常用方法是采用均值濾波或中值濾波,均值濾波是一種線性空間濾波,它用一個(gè)有
6、奇數(shù)點(diǎn)的掩模在圖像上滑動(dòng),將掩模中心對(duì)應(yīng)像素點(diǎn)的灰度值用掩模內(nèi)所有像素點(diǎn)灰度的平均值代替,如果規(guī)定了在取均值過(guò)程中掩模內(nèi)各像素點(diǎn)所占的權(quán)重,即各像素點(diǎn)所乘系數(shù),這時(shí)就稱為加權(quán)均值濾波;中值濾波是一種非線性空間濾波,其與均值濾波的區(qū)別是掩模中心對(duì)應(yīng)像素點(diǎn)的灰度值用掩模內(nèi)所有像素點(diǎn)灰度值的中間值代替。(4) 銳化平滑噪聲時(shí)經(jīng)常會(huì)使圖像的邊緣變的模糊,針對(duì)平均和積分運(yùn)算使圖像模糊,可對(duì)其進(jìn)行反運(yùn)算采取微分算子使用模板和統(tǒng)計(jì)差值的方法,使圖像增強(qiáng)銳化。圖像邊緣與高頻分量相對(duì)應(yīng),高通濾波器可以讓高頻分量暢通無(wú)阻,而對(duì)低頻分量則充分限制,通過(guò)高通濾波器去除低頻分量,也可以達(dá)到圖像銳化的目的。1.4 實(shí)驗(yàn)(
7、一)直方圖均衡化,過(guò)程如下:(1)計(jì)算原圖像的灰度直方圖;(2)計(jì)算原圖像的灰度累積分布函數(shù),進(jìn)一步求出灰度變換表;(3)根據(jù)灰度變換表,將原圖像各灰度級(jí)映射為新的灰度級(jí)。在MATLAB中,histeq函數(shù)可以實(shí)現(xiàn)直方圖均衡化。該命令對(duì)灰度圖像I進(jìn)行變換,返回有N級(jí)灰度的圖像J,J中的每個(gè)灰度級(jí)具有大致相同的像素點(diǎn),所以圖像J的直方圖較為平坦,當(dāng)N小于I中灰度級(jí)數(shù)時(shí),J的直方圖更為平坦,缺省的N值為64。代碼: %灰度直方圖均衡化I=imread('source.jpg');%讀取圖像subplot(2,2,1);imshow(I);%顯示圖像title('原圖'
8、;);subplot(2,2,2);imhist(I)%繪制圖像的灰度直方圖title('原圖的灰度直方圖'); imhist(I)%顯示原始圖像直方圖subplot(2,2,3);J=histeq(I,64);%對(duì)圖像進(jìn)行均衡化處理,返回有64級(jí)灰度的圖像Jimshow(J);%顯示圖像title('原圖直方圖均衡化');subplot(2,2,4);imhist(J);%繪制圖像的灰度直方圖title('均衡后的灰度直方圖');效果圖:結(jié)果分析:從上圖【原圖】可以看出原始圖像動(dòng)態(tài)范圍較小,整體較暗,反映在直方圖上像素主要集中在低灰度的一側(cè),如
9、【原圖的灰度直方圖】所示。經(jīng)過(guò)對(duì)比度調(diào)整,圖像變亮,可以看到更多的細(xì)節(jié)如圖【原圖直方圖均衡化】和【均衡后的灰度直方圖】所示。優(yōu)勢(shì):可以充分利用圖像中的亮度信息,明顯改善圖像質(zhì)量,是一種常用的圖像增強(qiáng)算法。不足:對(duì)于受噪聲影響明顯的圖像,該算法增強(qiáng)效果不明顯。即不能有效地抑制噪聲。而且,僅僅利用了圖像中的局部信息。(2) 銳化圖像銳化處理的作用是使灰度反差增強(qiáng),從而使模糊圖像變得更加清晰。圖像模糊的實(shí)質(zhì)就是圖像受到平均運(yùn)算或積分運(yùn)算,因此可以對(duì)圖像進(jìn)行逆運(yùn)算,如微分運(yùn)算以突出圖像細(xì)節(jié)使圖像變得更為清晰。由于拉普拉斯是一種微分算子,它的應(yīng)用可增強(qiáng)圖像中灰度突變的區(qū)域,減弱灰度的慢變化區(qū)域。因此,銳
10、化處理可選擇拉普拉斯算子對(duì)原圖像進(jìn)行處理產(chǎn)生描述灰度突變的圖像,再將拉普拉斯圖像與原始圖像疊加而產(chǎn)生銳化圖像。拉普拉斯銳化的基本方法可以由下式表示: 這種簡(jiǎn)單的銳化方法既可以產(chǎn)生拉普拉斯銳化處理的效果,同時(shí)又能保留背景信息:將原始圖像疊加到拉普拉斯變換的處理結(jié)果中去,可以使圖像中的各灰度值得到保留、灰度突變處的對(duì)比度得到增強(qiáng),最終結(jié)果是在保留圖像背景的前提下,突現(xiàn)出圖像中小的細(xì)節(jié)。代碼:a=imread('source.jpg');subplot(221);imshow(a);title('原圖');b=double(a);%將圖像矩陣轉(zhuǎn)化為double類型s=
11、size(b);c=zeros(s(1,1),s(1,2);for x=2:s(1,1)-1 for y=2:s(1,2)-1 c(x,y)=(-b(x+1,y)-b(x-1,y)-b(x,y+1)-b(x,y-1)+4*b(x,y); endend%用拉氏算子對(duì)圖像進(jìn)行濾波,這個(gè)過(guò)程相當(dāng)于運(yùn)用了一個(gè)3×3的掩膜0,1,0;1,4,1;0,1,0subplot(222);imshow(c);title('Laplace銳化濾波圖像');d=b+c;%當(dāng)拉普拉斯掩膜中心系數(shù)為正時(shí),增強(qiáng)圖像為原圖像于拉氏算子濾波圖像之和d=uint8(d);%將圖像矩陣變回uint8格式
12、subplot(223);imshow(d);title('Laplace銳化濾波結(jié)果');效果圖;結(jié)果分析:比較原始模糊圖像和經(jīng)過(guò)拉氏算子運(yùn)算的圖像,可以發(fā)現(xiàn),圖像模糊的部分得到了銳化,特別是模糊的邊緣部分得到了增強(qiáng),邊界更加明顯。但是,圖像顯示清楚的地方,經(jīng)過(guò)濾波發(fā)生了失真,這也是拉氏算子增強(qiáng)的一大缺點(diǎn)。2 邊緣檢測(cè) 邊緣是圖像上灰度變化最劇烈的地方,傳統(tǒng)的邊緣檢測(cè)就是利用了這個(gè)特點(diǎn),對(duì)圖像各個(gè)像素點(diǎn)進(jìn)行微分或求二階微分來(lái)確定邊緣像素點(diǎn)。一階微分圖像的峰值處對(duì)應(yīng)著圖像的邊緣點(diǎn);二階微分圖像的過(guò)零點(diǎn)處對(duì)應(yīng)著圖像的邊緣點(diǎn)。根據(jù)數(shù)字圖像的特點(diǎn),處理圖像過(guò)程中常采用差分來(lái)代替導(dǎo)數(shù)運(yùn)
13、算,對(duì)于圖像的簡(jiǎn)單一階導(dǎo)數(shù)運(yùn)算,由于具有固定的方向性,只能檢測(cè)特定方向的邊緣,所以不具有普遍性。為了克服一階導(dǎo)數(shù)的缺點(diǎn),我們定義圖像的梯度為梯度算子,它是圖像處理中最常用的一階微分算法。圖像梯度的最重要性質(zhì)是梯度的方向是在圖像灰度最大變化率上,它恰好可以反映出圖像邊緣上的灰度變化。2.1 邊緣檢測(cè)的基本步驟 1. 濾波:邊緣和噪聲同屬圖像中強(qiáng)度變化劇烈的部位因此邊緣檢測(cè)算子對(duì)邊緣和噪聲都很敏感,因此必須使用濾波器來(lái)改善與噪聲有關(guān)的邊緣檢測(cè)算子的性能。2. 增強(qiáng):增強(qiáng)邊緣的基礎(chǔ)是確定圖像各點(diǎn)鄰域強(qiáng)度的變化值。增強(qiáng)算法可以將鄰域(或局部)強(qiáng)度之有顯著變化的點(diǎn)突顯出來(lái)。3. 檢測(cè):在圖像中有許多點(diǎn)的
14、梯度幅值比較大,而這些點(diǎn)在特定的應(yīng)用領(lǐng)域中并不都是邊緣,所以應(yīng)該用某種方法來(lái)確定哪些點(diǎn)是邊緣點(diǎn)。最簡(jiǎn)單的邊緣檢測(cè)判據(jù)是利用梯度幅值的閾值作為判據(jù)。4. 定位:邊緣定位即確定邊緣點(diǎn)的具體位置,除此之外還應(yīng)包括邊緣細(xì)化、連接。圖.邊緣檢測(cè)的流程常用邊緣檢測(cè)算法經(jīng)典的邊緣檢測(cè)算法主要有微分法和最優(yōu)算子法,微分法是通過(guò)利用經(jīng)典的微分算子檢測(cè)圖像的邊緣,主要包括Roberts算子、Sobel算子、Prewitt算子、Kirsch算子和Laplacian算子等,最優(yōu)算子法則是微分算子發(fā)展和優(yōu)化,主要有LOG算子和Canny算子等。1 .Roberts算子 邊緣,是指周?chē)袼鼗叶扔须A躍變化或屋頂?shù)茸兓哪切?/p>
15、像素的集合。圖像的邊緣對(duì)應(yīng)著圖像灰度的不連續(xù)性。顯然圖像的邊緣很少是從一個(gè)灰度跳到另一個(gè)灰度這樣的理想狀況。真實(shí)圖像的邊緣通常都具有有限的寬度呈現(xiàn)出陡峭的斜坡?tīng)睢?邊緣的銳利程度由圖像灰度的梯度決定。梯度是一個(gè)向量,f指出灰度變化最快的方向和變化量。 梯度大小由 確定。而梯度方向則由 確定。因此最簡(jiǎn)單的邊緣檢測(cè)算子是用圖像的垂直和水平差分來(lái)逼近梯度算子: 因此當(dāng)我們尋找邊緣的時(shí)候,最簡(jiǎn)單的方法是對(duì)每一個(gè)像素計(jì)算出(2.1.4)的向量,然后求出它的絕對(duì)值。利用這種思想就得到了Roberts算子: 2 .Prewitt算子Roberts算子是直觀的也是簡(jiǎn)單的,但是對(duì)噪聲多的情況顯然效果不好。實(shí)踐中
16、人們做了大量的實(shí)踐,總結(jié)出了一些經(jīng)驗(yàn),后來(lái)Prewitt提出了一個(gè)算子,這就是Prewitt算子。 Prewitt邊緣檢測(cè)算子使用兩個(gè)有向算子(一個(gè)水平的,一個(gè)是垂直的,一般稱為模板),每一個(gè)逼近一個(gè)偏導(dǎo)數(shù): 如果我們用Prewitt算子檢測(cè)圖像 M 的邊緣的話,我們可以先分別用水平算子和垂直算子對(duì)圖像進(jìn)行卷積,得到的是兩個(gè)矩陣,在不考慮邊界的情形下也是和原圖像同樣大小的 M1,M2,他們分別表示圖像M中相同位置處的兩個(gè)偏導(dǎo)數(shù)。然后把M1,M2 對(duì)應(yīng)位置的兩個(gè)數(shù)平方后相加得到一個(gè)新的矩陣G,G表示M中各個(gè)像素的灰度的梯度值(一個(gè)逼近)。然后就可以通過(guò)閥值處理得到邊緣圖像。我們假設(shè)圖像的灰度滿足
17、下面這個(gè)關(guān)系: 則梯度是(,) 。 顯然,當(dāng)前像素 3×3 鄰域內(nèi)像素值為: 定義垂直算子和水平算子形如: 利用這兩個(gè)模板對(duì)當(dāng)前像素進(jìn)行卷積,得到的方向?qū)?shù)為 : 因此當(dāng)前像素處的梯度的大小為 : 顯然要有: 2(2a+b)= 1 我們?nèi)?a=b=1/6則得到的模板就是1/6乘Prewitt算子。3. Kirsch算子Kirsch算子由8個(gè)3×3窗口模扳組成、每個(gè)模板分別代表一個(gè)特定的檢測(cè)方向,其模板算子如圖2.3.1所示。 在進(jìn)行邊緣檢測(cè)時(shí),把M0-M7所表示的邊緣模板(加權(quán)矩陣)分別與圖像中的一個(gè)3×3區(qū)域相乘,選取輸出值為最大的模板。然后,把這一最大輸出值作
18、為中央像素點(diǎn)上的邊緣強(qiáng)度,把取得最大值的邊緣模板Mk的方向k(k的取值如圖2.3.2所示)作為其邊緣方向。假設(shè)圖像中一點(diǎn)P(i,j)及其八鄰域的灰度如圖3.3.3所示,并設(shè)Qk(k0,1,7)為圖像經(jīng)過(guò)kirsch算子第k個(gè)模板處理后得到的k方向上的邊緣強(qiáng)度,則P(i,j)的邊緣強(qiáng)度為s(i,j)=max|qk|(k=0,1,7),而相應(yīng)的邊緣方向D(i,j)=k|qk為最大值 圖2.3.1 圖2.3.2 圖2.3.34 canny算法Canny 的目標(biāo)是找到一個(gè)最優(yōu)的邊緣檢測(cè)算法,最優(yōu)邊緣檢測(cè)的含義是:(1)最優(yōu)檢測(cè):算法能夠盡可能多地標(biāo)識(shí)出圖像中的實(shí)際邊緣,漏檢真實(shí)邊緣的概率和誤檢非邊緣的
19、概率都盡可能?。?2)最優(yōu)定位準(zhǔn)則:檢測(cè)到的邊緣點(diǎn)的位置距離實(shí)際邊緣點(diǎn)的位置最近,或者是由于噪聲影響引起檢測(cè)出的邊緣偏離物體的真實(shí)邊緣的程度最??;(3)檢測(cè)點(diǎn)與邊緣點(diǎn)一一對(duì)應(yīng):算子檢測(cè)的邊緣點(diǎn)與實(shí)際邊緣點(diǎn)應(yīng)該是一一對(duì)應(yīng)。為了滿足這些要求 Canny 使用了變分法(calculus of variations),這是一種尋找優(yōu)化特定功能的函數(shù)的方法。最優(yōu)檢測(cè)使用四個(gè)指數(shù)函數(shù)項(xiàng)表示,但是它非常近似于高斯函數(shù)的一階導(dǎo)數(shù)。算法大致流程:1、求圖像與高斯平滑濾波器卷積:2、使用一階有限差分計(jì)算偏導(dǎo)數(shù)的兩個(gè)陣列P與Q:3、幅值和方位角:4、非極大值抑制(NMS ) :細(xì)化幅值圖像中的屋脊帶,即只保留幅值局部變化
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 無(wú)人駕駛無(wú)人機(jī)物流配送服務(wù)合同
- 課程設(shè)計(jì)注塑撲克盒
- 新零售模式下農(nóng)產(chǎn)品物流配送優(yōu)化實(shí)踐案例分享
- 2024年暑期限定工種勞動(dòng)協(xié)議格式
- 教育培訓(xùn)業(yè)線上線下一站式學(xué)習(xí)平臺(tái)建設(shè)方案
- 課程設(shè)計(jì)擋土墻計(jì)算書(shū)
- 2024年度消防施工補(bǔ)充協(xié)議范例
- 繁華商業(yè)街租賃協(xié)議樣本2024年
- 醫(yī)療設(shè)備操作與維護(hù)培訓(xùn)手冊(cè)之服務(wù)協(xié)議
- 會(huì)展服務(wù)業(yè)數(shù)字化展臺(tái)建設(shè)方案
- 噴漆安全管理制度
- 2024教師職業(yè)個(gè)人三年發(fā)展規(guī)劃
- 培訓(xùn)考勤表模板
- 2020-2021學(xué)年浙江省杭州市余杭區(qū)八年級(jí)(上)期中數(shù)學(xué)試卷(附答案詳解)
- 2023年水文化知識(shí)競(jìng)賽總題庫(kù)(附答案)
- 快手直播推廣方式文案范文
- GB/T 44142-2024中央廚房建設(shè)要求
- 《少年中國(guó)說(shuō)(節(jié)選)》教學(xué)設(shè)計(jì)2(第一課時(shí))
- 大型壓裂施工現(xiàn)場(chǎng)安全管理規(guī)范
- 辦公家具采購(gòu)項(xiàng)目質(zhì)量保證售后服務(wù)承諾書(shū)
- 城市燃?xì)夤艿赖壤匣赂脑祉?xiàng)目初步設(shè)計(jì)說(shuō)明
評(píng)論
0/150
提交評(píng)論