版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、一對一授課教案 學(xué)員姓名: 年級: 所授科目: 上課時(shí)間: 年 月 日 時(shí) 分至 時(shí) 分共 小時(shí)老師簽名學(xué)生簽名教學(xué)主題空間向量與立體幾何上次作業(yè)檢查本次上課表現(xiàn)本次作業(yè)一知識要點(diǎn)。1. 空間向量的概念:在空間,我們把具有大小和方向的量叫做向量。注:(1)向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量。(2)向量具有平移不變性2. 空間向量的運(yùn)算。定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘運(yùn)算如下(如圖)。 ;運(yùn)算律:加法交換律:加法結(jié)合律:數(shù)乘分配律:運(yùn)算法則:三角形法則、平行四邊形法則、平行六面體法則3. 共線向量。(1)如果表示空間向量的有向線段所在的直線平行或重
2、合,那么這些向量也叫做共線向量或平行向量,平行于,記作。(2)共線向量定理:空間任意兩個(gè)向量、(),/存在實(shí)數(shù),使。(3)三點(diǎn)共線:a、b、c三點(diǎn)共線<=> <=>(4)與共線的單位向量為4. 共面向量 (1)定義:一般地,能平移到同一平面內(nèi)的向量叫做共面向量。說明:空間任意的兩向量都是共面的。(2)共面向量定理:如果兩個(gè)向量不共線,與向量共面的條件是存在實(shí)數(shù)使。(3)四點(diǎn)共面:若a、b、c、p四點(diǎn)共面<=> <=>5. 空間向量基本定理:如果三個(gè)向量不共面,那么對空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組,使。若三向量不共面,我們把叫做空間的一個(gè)基
3、底,叫做基向量,空間任意三個(gè)不共面的向量都可以構(gòu)成空間的一個(gè)基底。推論:設(shè)是不共面的四點(diǎn),則對空間任一點(diǎn),都存在唯一的三個(gè)有序?qū)崝?shù),使。6. 空間向量的直角坐標(biāo)系: (1)空間直角坐標(biāo)系中的坐標(biāo):在空間直角坐標(biāo)系中,對空間任一點(diǎn),存在唯一的有序?qū)崝?shù)組,使,有序?qū)崝?shù)組叫作向量在空間直角坐標(biāo)系中的坐標(biāo),記作,叫橫坐標(biāo),叫縱坐標(biāo),叫豎坐標(biāo)。注:點(diǎn)a(x,y,z)關(guān)于x軸的的對稱點(diǎn)為(x,-y,-z),關(guān)于xoy平面的對稱點(diǎn)為(x,y,-z).即點(diǎn)關(guān)于什么軸/平面對稱,什么坐標(biāo)不變,其余的分坐標(biāo)均相反。在y軸上的點(diǎn)設(shè)為(0,y,0),在平面yoz中的點(diǎn)設(shè)為(0,y,z)(2)若空間的一個(gè)基底的三個(gè)基向
4、量互相垂直,且長為,這個(gè)基底叫單位正交基底,用表示??臻g中任一向量=(x,y,z)(3)空間向量的直角坐標(biāo)運(yùn)算律:若,則, , 。若,則。一個(gè)向量在直角坐標(biāo)系中的坐標(biāo)等于表示這個(gè)向量的有向線段的終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo)。定比分點(diǎn)公式:若,則點(diǎn)p坐標(biāo)為。推導(dǎo):設(shè)p(x,y,z)則,顯然,當(dāng)p為ab中點(diǎn)時(shí),三角形重心p坐標(biāo)為abc的五心:內(nèi)心p:內(nèi)切圓的圓心,角平分線的交點(diǎn)。(單位向量)外心p:外接圓的圓心,中垂線的交點(diǎn)。垂心p:高的交點(diǎn):(移項(xiàng),內(nèi)積為0,則垂直)重心p:中線的交點(diǎn),三等分點(diǎn)(中位線比)中心:正三角形的所有心的合一。(4)模長公式:若,則,(5)夾角公式:。abc中<=&g
5、t;a為銳角<=>a為鈍角,鈍角(6)兩點(diǎn)間的距離公式:若,則,或 7. 空間向量的數(shù)量積。(1)空間向量的夾角及其表示:已知兩非零向量,在空間任取一點(diǎn),作,則叫做向量與的夾角,記作;且規(guī)定,顯然有;若,則稱與互相垂直,記作:。(2)向量的模:設(shè),則有向線段的長度叫做向量的長度或模,記作:。(3)向量的數(shù)量積:已知向量,則叫做的數(shù)量積,記作,即。(4)空間向量數(shù)量積的性質(zhì):。(5)空間向量數(shù)量積運(yùn)算律:。(交換律)。(分配律)。不滿足乘法結(jié)合率:二空間向量與立體幾何1線線平行兩線的方向向量平行1-1線面平行線的方向向量與面的法向量垂直1-2面面平行兩面的法向量平行2線線垂直(共面與
6、異面)兩線的方向向量垂直2-1線面垂直線與面的法向量平行2-2面面垂直兩面的法向量垂直3線線夾角(共面與異面)兩線的方向向量的夾角或夾角的補(bǔ)角,3-1線面夾角:求線面夾角的步驟:先求線的方向向量與面的法向量的夾角,若為銳角角即可,若為鈍角,則取其補(bǔ)角;再求其余角,即是線面的夾角.3-2面面夾角(二面角):若兩面的法向量一進(jìn)一出,則二面角等于兩法向量的夾角;法向量同進(jìn)同出,則二面角等于法向量的夾角的補(bǔ)角. 4點(diǎn)面距離 :求點(diǎn)到平面的距離: 在平面上去一點(diǎn),得向量;; 計(jì)算平面的法向量;.4-1線面距離(線面平行):轉(zhuǎn)化為點(diǎn)面距離4-2面面距離(面面平行):轉(zhuǎn)化為點(diǎn)面距離【典型例題】1基本運(yùn)算與基
7、本知識()例1. 已知平行六面體abcd,化簡下列向量表達(dá)式,標(biāo)出化簡結(jié)果的向量。; ; ; 。例2. 對空間任一點(diǎn)和不共線的三點(diǎn),問滿足向量式: (其中)的四點(diǎn)是否共面? 例3 已知空間三點(diǎn)a(0,2,3),b(2,1,6),c(1,1,5)。求以向量為一組鄰邊的平行四邊形的面積s;若向量分別與向量垂直,且|,求向量的坐標(biāo)。2基底法(如何找,轉(zhuǎn)化為基底運(yùn)算)3坐標(biāo)法(如何建立空間直角坐標(biāo)系,找坐標(biāo))4幾何法例4. 如圖,在空間四邊形中,求與的夾角的余弦值。說明:由圖形知向量的夾角易出錯,如易錯寫成,切記!例5. 長方體中,為與的交點(diǎn),為與的交點(diǎn),又,求長方體的高。 【模擬試題】1. 已知空間四邊形,連結(jié),設(shè)分別是的中點(diǎn),化簡下列各表達(dá)式,并標(biāo)出化簡結(jié)果向量:(1); (2); (3)。2. 已知平行四邊形abcd,從平面外一點(diǎn)引向量。(1)求證:四點(diǎn)共面;(2)平面平面。3. 如圖正方體中,求與所成角的余弦。 5. 已知平行六面體中,求的長。參考答案1. 解:如圖, (1);(2)。;(3)。2. 解:(1)證明:四邊形是平行四邊形,共面;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南省合同范例
- 出售修理車輛合同范例
- 供氣出售意向合同模板
- 商務(wù)公司合同范例
- 2024年度企業(yè)咨詢服務(wù)與戰(zhàn)略規(guī)劃合同
- 外包弱電施工合同范例
- 國慶花卉擺放合同范例
- 2024年度城市間搬家物流合作協(xié)議
- 園區(qū)勞務(wù)合同模板
- 上海精裝修房買賣合同范例
- 四級翻譯完整版本
- 四川省眉山市2023-2024學(xué)年八年級上學(xué)期語文期中試卷(含答案)
- 2024年酒店轉(zhuǎn)讓居間協(xié)議
- 小學(xué)生安全教育與自我保護(hù)能力培養(yǎng)研究課題研究方案
- 2024年福建省公務(wù)員錄用考試《行測》答案及解析
- 美麗農(nóng)村路建設(shè)指南DB41-T 1935-2020
- 2024年大學(xué)試題(計(jì)算機(jī)科學(xué))-網(wǎng)絡(luò)工程設(shè)計(jì)與系統(tǒng)集成考試近5年真題集錦(頻考類試題)帶答案
- 落實(shí)《中小學(xué)德育工作指南》制定的實(shí)施方案
- 期中 (試題) -2024-2025學(xué)年譯林版(三起)英語三年級上冊
- 2023年制藥設(shè)備行業(yè)分析報(bào)告及未來五至十年行業(yè)發(fā)展報(bào)告
- 期中測試卷(試題)-2024-2025學(xué)年三年級上冊語文統(tǒng)編版
評論
0/150
提交評論