版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 成都三十三中成都三十三中制作:楊洪芬制作:楊洪芬(二二)八年級(jí)上冊(cè)八年級(jí)上冊(cè)一、想一想一、想一想1.1.有理數(shù)如何分類(lèi)?有理數(shù)如何分類(lèi)?有理數(shù)有理數(shù)整數(shù)整數(shù)( (如如-1-1,0 0,2 2,3 3, ):):都可看成有限小數(shù)都可看成有限小數(shù). .分?jǐn)?shù)分?jǐn)?shù)( (如如 ): ):可不可能都化成有可不可能都化成有限小數(shù)或無(wú)限循環(huán)小數(shù)限小數(shù)或無(wú)限循環(huán)小數(shù)? ?119,52,31 2. 2.上節(jié)課了解到一些數(shù)上節(jié)課了解到一些數(shù), ,如如a a2 2=2=2,b b2 2=5=5中的中的a a,b b 既不既不 是整數(shù),也不是分?jǐn)?shù),那么它們究竟是什么數(shù)呢?是整數(shù),也不是分?jǐn)?shù),那么它們究竟是什么數(shù)呢?思
2、思 考考二、活動(dòng)與探究二、活動(dòng)與探究活動(dòng)活動(dòng)1 1:面積為面積為2 2,5 5的正方形的邊長(zhǎng)的正方形的邊長(zhǎng)a a,b b究竟是多少呢究竟是多少呢? ?邊長(zhǎng)邊長(zhǎng)a a面積面積s s1a21a2 1s41s41.4a1.51.4a1.5 1.96s2.25 1.96s2.25 1.41a1.42 1.41a1.42 1.9881s2.01641.9881s2.0164 1.414a1.415 1.414a1.415 1.999396s2.002225 1.999396s2.0022251.4142a1.4143 1.4142a1.4143 1.99996164s2.000244491.999961
3、64s2.0002444922aa 是多少?是多少?a=1.4142135652bb 是多少?是多少?b=2.2360679結(jié)論:結(jié)論:a a,b b既不是整數(shù),也不是分?jǐn)?shù),則既不是整數(shù),也不是分?jǐn)?shù),則a a,b b 一定不是有理數(shù)一定不是有理數(shù). .活動(dòng)活動(dòng)2:分?jǐn)?shù)化成小數(shù),最終此小數(shù)的形式有幾種分?jǐn)?shù)化成小數(shù),最終此小數(shù)的形式有幾種 情況?情況?請(qǐng)同學(xué)們以學(xué)習(xí)小組活動(dòng)請(qǐng)同學(xué)們以學(xué)習(xí)小組活動(dòng):一同學(xué)舉出任意一分?jǐn)?shù),一同學(xué)舉出任意一分?jǐn)?shù),另一同學(xué)將此分?jǐn)?shù)化成小數(shù)另一同學(xué)將此分?jǐn)?shù)化成小數(shù).并總結(jié)此小數(shù)的形式并總結(jié)此小數(shù)的形式?結(jié)論:分?jǐn)?shù)只能化成有限小數(shù)或無(wú)限循環(huán)小數(shù)結(jié)論:分?jǐn)?shù)只能化成有限小數(shù)或無(wú)限
4、循環(huán)小數(shù).即任何有限小數(shù)或無(wú)限循環(huán)小數(shù)都是有理數(shù)即任何有限小數(shù)或無(wú)限循環(huán)小數(shù)都是有理數(shù). .像像0.5858858885888850.585885888588885,1.414213561.41421356,2.23606792.2360679等這些數(shù)的小數(shù)位數(shù)等這些數(shù)的小數(shù)位數(shù)都是無(wú)限的都是無(wú)限的, ,但是又但是又不是循環(huán)的不是循環(huán)的, ,是是無(wú)限不循環(huán)小數(shù)無(wú)限不循環(huán)小數(shù). .強(qiáng)強(qiáng) 調(diào)調(diào)故無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)故無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù).(.(圓周率圓周率=3=3.1415926514159265也是一個(gè)也是一個(gè)無(wú)限不循環(huán)小數(shù)無(wú)限不循環(huán)小數(shù), ,故故是無(wú)理數(shù)是無(wú)理數(shù)) )三、分一分三、分一分到
5、目前為止我們所學(xué)過(guò)的數(shù)可以分為幾類(lèi)?到目前為止我們所學(xué)過(guò)的數(shù)可以分為幾類(lèi)?按小數(shù)的形式來(lái)分按小數(shù)的形式來(lái)分有理數(shù):有限小數(shù)或無(wú)限循環(huán)小數(shù)有理數(shù):有限小數(shù)或無(wú)限循環(huán)小數(shù)無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)數(shù)數(shù)整數(shù)整數(shù)分?jǐn)?shù)分?jǐn)?shù)四、辨一辨四、辨一辨,351.0,32例例1 1 填空填空.,96. 43.14159,-5.232332,12334567891011( (由相繼的正整數(shù)組成由相繼的正整數(shù)組成).).?.3有理數(shù)集合有理數(shù)集合無(wú)理數(shù)集合無(wú)理數(shù)集合,351.0.,96. 43.14159,3.14159,32-5.232332-5.23233212334567891011123345
6、67891011,3(1)(1)有限小數(shù)是有理數(shù)有限小數(shù)是有理數(shù); ; ( )(2)(2)無(wú)限小數(shù)都是無(wú)理數(shù)無(wú)限小數(shù)都是無(wú)理數(shù); ; ( )(3)(3)無(wú)理數(shù)都是無(wú)限小數(shù)無(wú)理數(shù)都是無(wú)限小數(shù); ; ( )(4)(4)有理數(shù)是有限小數(shù)有理數(shù)是有限小數(shù). . ( ) 例例2 2 判斷題判斷題?1.1.無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),有理數(shù)是有限小數(shù)或無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),有理數(shù)是有限小數(shù)或 無(wú)限循環(huán)小數(shù)無(wú)限循環(huán)小數(shù). .2.2.任何一個(gè)有理數(shù)都可以化成分?jǐn)?shù)任何一個(gè)有理數(shù)都可以化成分?jǐn)?shù) 形式(形式( p,q 為整數(shù)且互質(zhì)),而無(wú)理數(shù)不能為整數(shù)且互質(zhì)),而無(wú)理數(shù)不能. .qp強(qiáng)強(qiáng) 調(diào)調(diào)以下各正方形的邊長(zhǎng)是無(wú)理
7、數(shù)的是(以下各正方形的邊長(zhǎng)是無(wú)理數(shù)的是( )a.a.面積為面積為2525的正方形;的正方形; b.b.面積為面積為 的正方形;的正方形;c.c.面積為面積為8 8的正方形;的正方形; d.d.面積為面積為1.441.44的正方形的正方形. . 254c c例例3 3例例4 4一個(gè)直角三角形兩條直角邊的長(zhǎng)分別是一個(gè)直角三角形兩條直角邊的長(zhǎng)分別是3 3和和5,5,則斜邊則斜邊a a是有理數(shù)嗎是有理數(shù)嗎? ?解解: :由勾股定理得由勾股定理得: :a2 2= =3 32 2+5+52 2, ,即即a2 2=34.=34.因?yàn)橐驗(yàn)?434不是完全平方數(shù),不是完全平方數(shù),所以所以a不是有理數(shù)不是有理數(shù).
8、 .?35a五、練一練五、練一練1.1.隨堂練習(xí)隨堂練習(xí). .2.2.習(xí)題習(xí)題2.2.2.2.3.3.家庭作業(yè)家庭作業(yè): :學(xué)習(xí)叢書(shū)學(xué)習(xí)叢書(shū). .本課小結(jié)本課小結(jié): :1.1.無(wú)理數(shù)的定義無(wú)理數(shù)的定義. .2.2.數(shù)的分類(lèi)數(shù)的分類(lèi). .3.3.判定一個(gè)數(shù)是無(wú)理數(shù)還是有理數(shù)判定一個(gè)數(shù)是無(wú)理數(shù)還是有理數(shù). .設(shè)計(jì)面積為設(shè)計(jì)面積為5 5的圓的半徑為的圓的半徑為a. .(1)(1)a是有理數(shù)嗎是有理數(shù)嗎? ?說(shuō)說(shuō)你的理由說(shuō)說(shuō)你的理由. .(2)(2)估計(jì)估計(jì)a的值的值( (精確到十分位精確到十分位, ,并利用你的計(jì)算器驗(yàn)證并利用你的計(jì)算器驗(yàn)證 你的估計(jì)你的估計(jì). .(3)(3)如果精確到百分位呢如果精
9、確到百分位呢? ?解:解:a2 2=5=5, a2 2=5 .=5 .(1)(1)a不是有理數(shù)不是有理數(shù), ,因?yàn)橐驗(yàn)閍既不是整數(shù)既不是整數(shù), ,也不是分?jǐn)?shù)也不是分?jǐn)?shù), ,而是而是無(wú)限不循環(huán)小數(shù)無(wú)限不循環(huán)小數(shù). .(2)(2)估計(jì)估計(jì)a2.2.2.2.(3)(3)估計(jì)估計(jì)a2.24.2.24.24=2524=25嗎嗎? ?小明自豪地對(duì)同學(xué)說(shuō)小明自豪地對(duì)同學(xué)說(shuō):“:“我可以證明我可以證明24=25.”24=25.”同學(xué)們都同學(xué)們都覺(jué)得是天方夜譚覺(jué)得是天方夜譚. .課后探究:讀一讀,你有何收獲課后探究:讀一讀,你有何收獲? ?小明取一張方格紙如下圖小明取一張方格紙如下圖(1),(1),如圖將它剪開(kāi)
10、如圖將它剪開(kāi), ,然后拼成然后拼成圖圖(2)(2)的正方形的正方形. .同學(xué)們數(shù)了一下同學(xué)們數(shù)了一下, ,圖圖(1)(1)有有2424個(gè)方格個(gè)方格, ,圖圖(2)(2)變成了變成了2525個(gè)方格個(gè)方格. .這把同學(xué)們都搞悶了這把同學(xué)們都搞悶了, ,你能揭穿他你能揭穿他的騙術(shù)嗎的騙術(shù)嗎? ?事實(shí)上,事實(shí)上,3 3,4 4兩塊并不密兩塊并不密切合縫,拼成的正方形缺切合縫,拼成的正方形缺少了圖中的陰影部分。少了圖中的陰影部分。你想出來(lái)了嗎?你想出來(lái)了嗎?是誰(shuí)最早使用符號(hào)是誰(shuí)最早使用符號(hào)表示圓周率表示圓周率? ?無(wú)理數(shù)無(wú)理數(shù)表示圓周率表示圓周率. .是從什么時(shí)候開(kāi)始用是從什么時(shí)候開(kāi)始用表示圓周表示圓周
11、率的呢?為什么用字母呢率的呢?為什么用字母呢 ? 開(kāi)卷有益:開(kāi)卷有益: 1600 1600年英國(guó)的威廉年英國(guó)的威廉. .奧托蘭特奧托蘭特(willian oughtredwillian oughtred)首先使首先使用用 表示圓周率,他的理由是,因?yàn)楸硎緢A周率,他的理由是,因?yàn)槭窍ED文圓周的第一個(gè)是希臘文圓周的第一個(gè)字母,奧托蘭特用它表示圓周長(zhǎng),而字母,奧托蘭特用它表示圓周長(zhǎng),而是希臘文直徑的第一個(gè)字是希臘文直徑的第一個(gè)字母,奧托蘭特用它表示直徑,根據(jù)圓周率母,奧托蘭特用它表示直徑,根據(jù)圓周率= = , 理解為圓理解為圓周率周率, ,但在推求圓周率的過(guò)程中但在推求圓周率的過(guò)程中, ,人們常選用直徑為人們常選用直徑為1 1的圓的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店與旅游景點(diǎn)管理2025年度合作合同
- 二零二五年度蟲(chóng)害防治與智慧城市建設(shè)服務(wù)合同3篇
- 2025年食堂蔬菜季節(jié)性價(jià)格調(diào)整合同3篇
- 二零二五年度撤股合同范本:上市公司股權(quán)減持操作指南4篇
- 二零二四企業(yè)內(nèi)部承包項(xiàng)目數(shù)據(jù)分析合同樣本3篇
- 二零二五年度樓頂廣告廣告位租賃與制作合同3篇
- 二零二五年度農(nóng)村土地流轉(zhuǎn)合作合同模板
- 二零二五年度戶外運(yùn)動(dòng)品牌加盟合同3篇
- 2025版城市綠化樹(shù)苗采購(gòu)合同范本范文3篇
- 二零二五年度智能機(jī)器人研發(fā)與制造勞動(dòng)合同3篇
- 電纜擠塑操作手冊(cè)
- 浙江寧波鄞州區(qū)市級(jí)名校2025屆中考生物全真模擬試卷含解析
- 2024-2025學(xué)年廣東省深圳市南山區(qū)監(jiān)測(cè)數(shù)學(xué)三年級(jí)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析
- IATF16949基礎(chǔ)知識(shí)培訓(xùn)教材
- 【MOOC】大學(xué)生創(chuàng)新創(chuàng)業(yè)知能訓(xùn)練與指導(dǎo)-西北農(nóng)林科技大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 勞務(wù)派遣公司員工考核方案
- 基礎(chǔ)生態(tài)學(xué)-7種內(nèi)種間關(guān)系
- 2024年光伏農(nóng)田出租合同范本
- 《阻燃材料與技術(shù)》課件 第3講 阻燃基本理論
- 2024-2030年中國(guó)黃鱔市市場(chǎng)供需現(xiàn)狀與營(yíng)銷(xiāo)渠道分析報(bào)告
- 新人教版九年級(jí)化學(xué)第三單元復(fù)習(xí)課件
評(píng)論
0/150
提交評(píng)論