![初中數(shù)學(xué)概率與統(tǒng)計教學(xué)的難點與有效解決策略4頁_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/5/744d84c2-11b1-491f-bca7-c36a66feed8e/744d84c2-11b1-491f-bca7-c36a66feed8e1.gif)
![初中數(shù)學(xué)概率與統(tǒng)計教學(xué)的難點與有效解決策略4頁_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/5/744d84c2-11b1-491f-bca7-c36a66feed8e/744d84c2-11b1-491f-bca7-c36a66feed8e2.gif)
![初中數(shù)學(xué)概率與統(tǒng)計教學(xué)的難點與有效解決策略4頁_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/5/744d84c2-11b1-491f-bca7-c36a66feed8e/744d84c2-11b1-491f-bca7-c36a66feed8e3.gif)
![初中數(shù)學(xué)概率與統(tǒng)計教學(xué)的難點與有效解決策略4頁_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/5/744d84c2-11b1-491f-bca7-c36a66feed8e/744d84c2-11b1-491f-bca7-c36a66feed8e4.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、初中數(shù)學(xué)概率與統(tǒng)計教學(xué)的難點與有效解決策略 義務(wù)教育階段數(shù)學(xué)學(xué)習(xí)的新課程標準中,適度地增加了“統(tǒng)計與概率”的內(nèi)容.由于統(tǒng)計與概率學(xué)研究的對象、研究的思路與方式、以及獲得的研究結(jié)論的性質(zhì),產(chǎn)生的難點都與過去學(xué)生所接觸到的數(shù)學(xué)內(nèi)容有根本的不同有關(guān) :以往學(xué)的代數(shù)、幾何屬于“確定性” 數(shù)學(xué),學(xué)習(xí)時主要依賴邏輯思維和演繹的方法,它們在培養(yǎng)學(xué)生的計算能力、邏輯思維能力和空間觀念方面發(fā)揮著重要作用。而統(tǒng)計與概率屬于“不確定性”數(shù)學(xué),要尋找隨機性中的規(guī)律性,學(xué)習(xí)時主要依靠辨證思維和歸納的方法,它在培養(yǎng)學(xué)生的實踐能力和合作精神等方面更直接、更有效。而且對學(xué)生學(xué)習(xí)的評價,是教學(xué)工作的重要組成部分,也是新一輪課程
2、改革的重要課題。一、統(tǒng)計的難點分析及解決策略 初中數(shù)學(xué)中統(tǒng)計學(xué)習(xí)的難點之一:形成正確的統(tǒng)計觀念。教師的教學(xué)放在重視知識點的傳授,對統(tǒng)計知識的考核也局限在知識點的考核。因此導(dǎo)致學(xué)生沒有經(jīng)歷統(tǒng)計過程,難以形成正確的統(tǒng)計觀念。解決方法:( 1 )使學(xué)生經(jīng)歷統(tǒng)計活動的全過程:要使學(xué)生逐步建立統(tǒng)計觀念,最有效的方法是讓他們真正投入到統(tǒng)計活動的全過程中去:提出問題,收集數(shù)據(jù),整理數(shù)據(jù),分析數(shù)據(jù),做出決策,進行交流、評價與改進。在參與活動中學(xué)會統(tǒng)計方法,滲透統(tǒng)計思想。( 2 )使學(xué)生在現(xiàn)實情境中體會統(tǒng)計對決策的影響:在教學(xué)中結(jié)合生活實例展示統(tǒng)計的廣泛應(yīng)用,使學(xué)生在親身經(jīng)歷解決實際問題的過程中體會統(tǒng)計對決策的
3、作用。 初中數(shù)學(xué)中統(tǒng)計學(xué)習(xí)的難點之二:抽樣的合理性,如何抽樣更合理,學(xué)生存在很多困惑。 解決方法:(1)在抽樣方法的學(xué)習(xí)過程中,應(yīng)該講到隨機取樣,隨機性的作用,保證這個樣本具有代表性,這樣的話才能正確的理解這個概念,以及它和以往不同概念之間的差別。(2)應(yīng)該讓學(xué)生在具體情境中了解由于所取的樣本不同,將會導(dǎo)致統(tǒng)計結(jié)論的差異。 初中數(shù)學(xué)中統(tǒng)計學(xué)習(xí)的難點之三:統(tǒng)計量含義的理解。對統(tǒng)計量的含義的理解不夠到位,這其中表現(xiàn)最突出的就是方差。 解決方法:作為概念課的教學(xué),“概念產(chǎn)生背景的合理性和應(yīng)用性”是激發(fā)學(xué)生自主學(xué)習(xí)新概念的突破口。所以要設(shè)置合理的問題情境,使每一個概念來源于生活,反之應(yīng)用于生活,學(xué)生才
4、能有比較深刻的體會。二、概率的難點分析及解決策略 1、初中數(shù)學(xué)中概率學(xué)習(xí)的難點之一:建立“隨機觀念”。隨機現(xiàn)象是概率與統(tǒng)計部分重要的研究對象,從隨機現(xiàn)象中去尋找規(guī)律,這對學(xué)生來說是一個全新的觀念。特別是如果學(xué)生缺乏隨機現(xiàn)象的豐富體驗,往往很難建立這一觀念。 解決方法:學(xué)生對隨機現(xiàn)象有初步的理解,必須在大量的實驗過程中,才能豐富學(xué)生對概率意義的理解,形成隨機觀念。 2、初中數(shù)學(xué)中概率學(xué)習(xí)的難點之二:概率的抽象性。跟過去的精確數(shù)學(xué)相比較,概率比較抽象,像長度和面積這些度量都比較直觀,對溫度的高低在一定范圍我們可以感知。而事件發(fā)生的可能性大小的度量,直觀看不見,也無法感知。雖然學(xué)生具有一些生活經(jīng)驗,
5、這些經(jīng)驗是學(xué)生學(xué)習(xí)概率的基礎(chǔ),但其中往往有一些是錯誤的。逐步消除錯誤的經(jīng)驗,建立正確的概率直覺是概率教學(xué)的一個重要目標。 解決方法: 對于概率的研究,在教學(xué)中多結(jié)合實例,讓學(xué)生親自經(jīng)歷隨機現(xiàn)象的探索過程,親自動手進行實驗,收集實驗數(shù)據(jù),分析實驗結(jié)果,并將所得結(jié)果與自己的猜測進行比較。 教師要注重創(chuàng)設(shè)情境,讓學(xué)生在解決實際問題的過程中逐步理解概率。 3.初中數(shù)學(xué)中概率學(xué)習(xí)的難點之三:概率的統(tǒng)計定義的理解。由于教材中多為古典概型或幾何概型的問題,所以容易造成學(xué)生解決概率問題時,默認他是等可能的。所以對于概率的統(tǒng)計定義,學(xué)生的理解比較困難。 解決方法 :(1)在相同的條件下做大量重復(fù)實驗,一個事件
6、A 出現(xiàn)的次數(shù) m 和總的實驗次數(shù) n 之比,稱為事件 A 在這 n 次實驗中出現(xiàn)的頻率。當實驗次數(shù) n 很大時,頻率將穩(wěn)定在一個常數(shù)附近。 n 越大,頻率偏離這個常數(shù)較大的可能性越小,這個常數(shù)稱為這個事件的概率。 這個定義與統(tǒng)計有密切的關(guān)系,它建立在頻率穩(wěn)定性的基礎(chǔ)上,所以稱為概率的統(tǒng)計定義。這種對概率討論的對象不再限于隨機實驗所有可能的結(jié)果為等可能的情形,因而更具有一般性。(2)概率的統(tǒng)計定義突破了古典概率、幾何概率中隨機實驗要滿足“結(jié)果等可能”的限制,因而具有一般性,其適用范圍也更寬泛。從理論上說,古典概率、幾何概率的概率也能夠通過大量重復(fù)實驗由頻率的穩(wěn)定性得出,即概率的統(tǒng)計定義的適用范
7、圍包括“結(jié)果等可能”的隨機實驗。 4、初中數(shù)學(xué)中概率學(xué)習(xí)的難點之四:概率與頻率的關(guān)系。概率與頻率之間到底是什么樣的關(guān)系?學(xué)生理解起來很困難。頻率和概率是兩個不同概念,頻率與實驗的次數(shù)有關(guān) ,而頻率的穩(wěn)定性又說明了概率是一個客觀存在的數(shù) ,是隨機事件自身的一個屬性 , 它與實驗次數(shù)無關(guān)。解決方法:(1)直觀認識:概率描述事件發(fā)生的可能性大小,它是事件本身唯一確定的一個常數(shù);頻率反映在 n次實驗中,事件發(fā)生的頻繁程度。一般地,如果一個事件的概率較大,頻率也較大,概率較小,頻率也較小。反之也對。(2)具體實驗:通過大量重復(fù)實驗,借助圖形表示頻率的穩(wěn)定性規(guī)律:隨著實驗次數(shù)的增多,頻率的波動越來越小,逐
8、漸穩(wěn)定在一個常數(shù)附近。但應(yīng)該認識到頻率的不確定性,即當實驗次數(shù)較少時,頻率的波動可能比較大。 (3)精確刻畫:以擲硬幣為例,已知 “正面向上 ”的概率為 0 . 5 ,擲兩次硬幣,可能頻率是 0 . 5 ,用頻率估計概率的誤差為 0 ;而擲 100 次硬幣,也可能頻率為 0 . 2 ,誤差為 0 . 3 。顯然上面的敘述不嚴密,太絕對了。比較嚴格的敘述為: “當實驗次數(shù)較少時,用頻率估計概率誤差較小的可能性較小,實驗次數(shù)越多,用頻率估計概率誤差較小的可能性越大 ”。(4)我們在注重概率論與數(shù)理統(tǒng)計課程理論教學(xué)的同時,應(yīng)著重培養(yǎng)學(xué)生將生活中的實際問題轉(zhuǎn)化為數(shù)學(xué)模型,并且能對模型的求解結(jié)果做出合理
9、的專業(yè)解釋的能力。案例:對湖中魚的數(shù)量估計問題。欲估計湖中魚的數(shù)量N,由于不可能把魚全部打撈,因此可以通過抽樣來估計。先從湖里打撈出99魚,并作上記號后放回湖里,然后再撈出來,其中有條魚有記號,則如何估計湖中魚的數(shù)量呢?可引導(dǎo)學(xué)生運用“頻率估計”、“矩估計”、“極大似然估計”的思想方法,通過觀察和嘗試去建立數(shù)學(xué)模型,解決該問題。這個例子不僅能讓學(xué)生了解統(tǒng)計推斷的應(yīng)用,而且讓學(xué)生學(xué)會思考如何去設(shè)計和選擇方法解決問題。 5、初中數(shù)學(xué)中概率學(xué)習(xí)的難點之五:對等可能的理解。學(xué)生在處理較為復(fù)雜的概率問題中,有時會忽視古典概率的使用條件:等可能。 解決方法:教學(xué)時,只需要通過例子感知一下“等可能”和“不等
10、可能”即可,以便讓學(xué)生明白古典定義的適用對象須具備的條件。 在教學(xué)中,在概率與統(tǒng)計這方面對學(xué)生的評價方法有以下的幾個看法: 1、 學(xué)生在具體活動中的投入程度(教師注重觀察)能否積極、主動的從事探索活動。傳統(tǒng)數(shù)學(xué)教學(xué)存在著四重四輕,即“重知識傳授,輕引導(dǎo)啟發(fā)”;“重教法設(shè)計,輕學(xué)法指導(dǎo)”;“重課堂訓(xùn)練,輕實踐應(yīng)用”;“重教師講授,輕學(xué)生參與”。因此在教學(xué)中,我們教師就必須改變過去那種,只注重學(xué)習(xí)結(jié)果,輕視學(xué)習(xí)過程的評價方式,而應(yīng)將評價的重心放在學(xué)生學(xué)習(xí)過程中的經(jīng)歷、體驗、探索等方面。在“統(tǒng)計與概率”教學(xué)中,使學(xué)生主動收集身邊材料進行統(tǒng)計活動,應(yīng)用圖表來表示數(shù)據(jù)。 2、 學(xué)生的活動水平能否通過思考,探索出有相關(guān)的信息,能否有條理的將在活動中探索出的信息表達出來,嘗試從不同的角度去思考問題,同時在活動中能否有自己的見解,能否在處理問題的過程中提出新的問題。 3、看學(xué)習(xí)過程中學(xué)生是否學(xué)會與他人合作,學(xué)會與他人交流,教師在評價學(xué)生時,能否主動與同學(xué)交流自己的看法,聽取他們的見解。交流各自對問題的見解,交流解決問題的思路方法與策略,交流獲得的結(jié)果等。在“統(tǒng)計與概率”教學(xué)中使學(xué)生通過小組合作,發(fā)揮小組的優(yōu)勢,共同協(xié)商對統(tǒng)計結(jié)果作出判斷和有效預(yù)測。 4、 學(xué)生是否有學(xué)好數(shù)學(xué)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度基礎(chǔ)設(shè)施建設(shè)項目結(jié)構(gòu)工程勞務(wù)分包合同范本
- 2025年度科技研發(fā)公證借款合同范本
- 2025年度建筑工程防水保溫材料供應(yīng)合同
- 2025年度海水淡化設(shè)備項目設(shè)備運輸保險合同
- 2025年租用潛水船及潛水人員合同
- 2025年二手車購買合同樣本(2篇)
- 個人借款合同書樣本3
- 2025年臨時工勞動合同如何模板(三篇)
- 2025正規(guī)版企業(yè)借款合同書
- 2025年個人房屋包工包料裝修合同標準版本(2篇)
- 《配電網(wǎng)設(shè)施可靠性評價指標導(dǎo)則》
- 2024年國家電網(wǎng)招聘之通信類題庫附參考答案(考試直接用)
- CJJ 169-2012城鎮(zhèn)道路路面設(shè)計規(guī)范
- 食品企業(yè)日管控周排查月調(diào)度記錄及其報告格式參考
- 產(chǎn)品質(zhì)量法解讀課件1
- 第八單元金屬和金屬材料單元復(fù)習(xí)題-2023-2024學(xué)年九年級化學(xué)人教版下冊
- 倉庫搬遷及改進方案課件
- 精神科護理技能5.3出走行為的防范與護理
- 采購管理學(xué)教學(xué)課件
- 《供應(yīng)商質(zhì)量會議》課件
- 江蘇省科技企業(yè)孵化器孵化能力評價研究的中期報告
評論
0/150
提交評論