




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、2.5平面向量應(yīng)用舉例2.5.12.5.1平面幾何的向量方法平面幾何的向量方法平面幾何中的向量方法平面幾何中的向量方法 向量概念和運算,都有明確的物理背景和向量概念和運算,都有明確的物理背景和幾何背景。當(dāng)向量與平面坐標(biāo)系結(jié)合以后,向幾何背景。當(dāng)向量與平面坐標(biāo)系結(jié)合以后,向量的運算就可以完全轉(zhuǎn)化為量的運算就可以完全轉(zhuǎn)化為“代數(shù)代數(shù)”的計算,的計算,這就為我們解決物理問題和幾何研究帶來極大這就為我們解決物理問題和幾何研究帶來極大的方便。的方便。 由于向量的線性運算和數(shù)量積運算具有鮮由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何的許多性質(zhì),如平移、明的幾何背景,平面幾何的許多性質(zhì),如平移
2、、全等、相似、長度、夾角都可以由向量的線性全等、相似、長度、夾角都可以由向量的線性運算及數(shù)量積表示出來,因此,利用向量方法運算及數(shù)量積表示出來,因此,利用向量方法可以解決平面幾何中的一些問題??梢越鉀Q平面幾何中的一些問題。問題:問題:平行四邊形是表示向量加法與減法的平行四邊形是表示向量加法與減法的幾何模型。如圖幾何模型。如圖,你能發(fā)現(xiàn)平行四邊形對角你能發(fā)現(xiàn)平行四邊形對角線的長度與兩條鄰邊長度之間的關(guān)系嗎?線的長度與兩條鄰邊長度之間的關(guān)系嗎?,ACABAD ,DBABAD ABCD猜想:猜想:2.類比猜想,平行四邊形有相似關(guān)系嗎?類比猜想,平行四邊形有相似關(guān)系嗎?例例1、證明平行四邊形四邊平方和
3、等于兩對角線平方和、證明平行四邊形四邊平方和等于兩對角線平方和ABDC已知:平行四邊形ABCD。求證:222222BDACDACDBCABbADaAB ,解:解:設(shè) ,則 baDBbaACaDAbBC;,分析:分析:因為平行四邊形對邊平行且相等,故設(shè) 其它線段對應(yīng)向量用它們表示。bADaAB ,)( 2222222baDACDBCAB2222babaBDAC222222222222bababbaabbaa222222BDACDACDBCAB你能總結(jié)一下利用向量法解決平面幾何問題你能總結(jié)一下利用向量法解決平面幾何問題的基本思路嗎?的基本思路嗎?(1)建立平面幾何與向量的聯(lián)系,用向量表)建立平面幾
4、何與向量的聯(lián)系,用向量表示問題中涉及的幾何元素,將平面幾何問題示問題中涉及的幾何元素,將平面幾何問題轉(zhuǎn)化為向量問題;轉(zhuǎn)化為向量問題;(2)通過向量運算,研究幾何元素之間的關(guān))通過向量運算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;系,如距離、夾角等問題;(3)把運算結(jié)果)把運算結(jié)果“翻譯翻譯”成幾何元素。成幾何元素。用向量方法解決平面幾何問題的用向量方法解決平面幾何問題的“三步曲三步曲”:簡述:簡述:形到向量形到向量 向量的運算向量的運算 向量和數(shù)到形向量和數(shù)到形例例2 如圖,如圖, ABCD中,點中,點E、F分別分別是是AD 、 DC邊的中點,邊的中點,BE 、 BF分別分別與與AC交于交
5、于R 、 T兩點,你能發(fā)現(xiàn)兩點,你能發(fā)現(xiàn)AR 、 RT 、TC之間的關(guān)系嗎?之間的關(guān)系嗎?ABCDEFRT猜想:猜想:AR=RT=TC解:設(shè)解:設(shè) 則則,A Ba A DbA Rr A Cab 由于由于 與與 共線,故設(shè)共線,故設(shè)ARAC(),rn ab nR 又因為又因為 共線,共線,所以設(shè)所以設(shè)E RE B與與12()ERmEBm ab 因為因為 所以所以A RA EE R 1122()rbm ab 1122()()n abbm ab 因因此此ABCDEFRT102()()mnm anb 即即,a b由由于于向向量量不不共共0102nmmn 線線,1 1解解 得得 : n n= = m m
6、 = =3 3111333,ARACTCACRTAC 所所以以同同理理于于是是故故AT=RT=TCABCDEFRT練習(xí)、證明直徑所對的圓周角練習(xí)、證明直徑所對的圓周角是直角是直角ABCO如圖所示,已知 O,AB為直徑,C為 O上任意一點。求證ACB=90分析分析:要證ACB=90,只須證向量 ,即 。CBAC 0CBAC解:解:設(shè) 則 ,由此可得:bOCaAO ,baCBbaAC,babaCBAC2222baba022rr即 ,ACB=900CBAC思考:能否用向量思考:能否用向量坐標(biāo)形式證明?坐標(biāo)形式證明?ab(1)建立平面幾何與向量的聯(lián)系,用向量表)建立平面幾何與向量的聯(lián)系,用向量表示問題中涉及的幾何元素,將平面幾何問題示問題中涉及的幾何元素,將平面幾何問題轉(zhuǎn)化為向量問題;轉(zhuǎn)化為向量問題;(2)通過向量運算,研究幾何元素之間的關(guān))通過向量運算,研究幾何元素之間的關(guān)系,如距離、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO/IEC 23090-7:2022/AMD1:2024 EN Information technology - Coded representation of immersive media - Part 7: Immersive media metadata - Amendment 1: Common metadata for imme
- 【正版授權(quán)】 ISO 7718-2:2025 EN Aircraft - Passenger doors interface requirements for connection of passenger boarding bridge or passenger transfer vehicle - Part 2: Upper deck doors
- 【正版授權(quán)】 ISO 16900-11:2025 EN Respiratory protective devices - Methods of test and test equipment - Part 11: Determination of field of vision
- 【正版授權(quán)】 IEC 81355-1:2024 EN/FR Industrial systems,installations and equipment and industrial products - Classification and designation of information - Part 1: Basic rules and clas
- 2025年集成電路代工廠商業(yè)秘密保護合同
- 2025年動力調(diào)諧陀螺平臺項目建議書
- 提升學(xué)校藝術(shù)教育影響力的策略計劃
- 醫(yī)院宣傳工作總結(jié)與改進方法計劃
- 班級傳統(tǒng)文化傳承活動的計劃
- 營養(yǎng)科膳食服務(wù)效果評估與改進計劃
- 部編版一年級語文下冊語文園地五《單元拓展-字族文》教學(xué)設(shè)計
- 靜脈輸液法操作并發(fā)癥的預(yù)防及處理
- 牙外傷的遠(yuǎn)期并發(fā)癥監(jiān)測
- 2024年中國成人心肌炎臨床診斷與治療指南解讀課件
- 全國川教版信息技術(shù)八年級下冊第一單元第2節(jié)《制作創(chuàng)意掛件》信息技術(shù)教學(xué)設(shè)計
- DL-T-1846-2018變電站機器人巡檢系統(tǒng)驗收規(guī)范
- 重大事故隱患判定標(biāo)準(zhǔn)與相關(guān)事故案例培訓(xùn)課件(建筑)
- 《我的寒假生活》
- 陜2018TJ 040建筑節(jié)能與結(jié)構(gòu)一體化 復(fù)合免拆保溫模板構(gòu)造圖集
- DZ/T 0430-2023 固體礦產(chǎn)資源儲量核實報告編寫規(guī)范(正式版)
- (高清版)WST 442-2024 臨床實驗室生物安全指南
評論
0/150
提交評論