下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、【商務(wù)英語閱讀推薦】why your analytics are failing you michael schrage harvard business review為什么數(shù)據(jù)分析聊勝于無?閱讀中你可能會(huì)遇到的詞匯:institutional ,insti*tju: n i adj.制度的;制度上的;學(xué)會(huì)的 incentive in'sentiv n.動(dòng)機(jī);刺激adj.激勵(lì)的;刺激的 compliance k m'plai ns n.順從,服從;承諾revolve ri'v iv, -'v :lv vi.旋轉(zhuǎn);循環(huán)出現(xiàn);反復(fù)考慮vt.使旋轉(zhuǎn);使循環(huán);反復(fù)考慮n
2、.旋 轉(zhuǎn);循壞;旋轉(zhuǎn)舞臺(tái)consensus k n'sens s n一致;輿論;合意many organizations investing millions in big data, analytics, and hiring quants appear frustrated. they undeniably have more and even better data their analysts and analytics are first-rate, too. but managers still seem to be having the same kinds of bus
3、iness arguments and debates except with much better data and analytics the ultimate decisions may be more data-driven but the organizational culture still feels the same. as one cio recently told me, "we're doing analytics in real-time that i could n't eve n have imagi ned five years ag
4、o but it's not havi ng any where n ear the impact i'd have thought/很多公司在大數(shù)據(jù),數(shù)據(jù)分析,分析人員雇傭上投資數(shù)百萬,卻收獲甚微。無可置疑,公司 掌握的數(shù)據(jù)越來越多,質(zhì)量也在提高;他們的分析師和分析成果都是世界一流的??墒浅?以外,管理者們面對(duì)的業(yè)務(wù)難題還是一樣的。最終的決策的確是建立在數(shù)據(jù)基礎(chǔ)之上的,但 組織文化沒有改變。就像-個(gè)首席信息官告訴我的,“目前數(shù)據(jù)分析達(dá)到了五年麗我想都不 敢想的高度,可是其作用卻與我的估計(jì)相距甚遠(yuǎn)?!眞hat gives? after facilitating several
5、 big data and analytics sessions with fortune 1000 firms and spending serious time with organizations that appear quite happy with their returns on analytic investment, a clear "data heuristic" has emerged. companies with mediocre to moderate outcomes use big data and analytics for decisio
6、n support; successful roareturn on analyticsfirms use them to effect and support behavior change. better data-driven analyses are n't simply /zplugged-i n" to existing processes and reviews, they're used to invent and encourage different kinds of conversations and interactions.原因是什么呢?與兒
7、個(gè)財(cái)富1000強(qiáng)金業(yè)合作人數(shù)據(jù)和數(shù)據(jù)分析的經(jīng)歷,加上調(diào)研對(duì)分 析投資回報(bào)感到滿意的企業(yè),我得出了一個(gè)“關(guān)于數(shù)據(jù)的啟發(fā)”。使用大數(shù)據(jù)和數(shù)據(jù)分析用 作決策支持的企業(yè)都成果甚微;而用作影響和支持行為變革的公司都獲得了高數(shù)據(jù)利潤(return on analytics)o只在現(xiàn)有的業(yè)務(wù)和審核屮便用更好的數(shù)據(jù)分析是不夠的,更應(yīng)該通 過數(shù)據(jù)分析去創(chuàng)造和鼓勵(lì)不同類型的對(duì)話及互動(dòng)。u we don't do the analytics or business intelligenee stuff until management identifies the behaviors we want to
8、cha nge or in flue nee, ” says one finan cial services cio. "improvi ng compliance and financial reporting is the low-hanging fruit but that just means we're using analytics to do what we are already doing better/“在企業(yè)明確想要改變或影響的行為z前,我們不做任何分析或商業(yè)情報(bào)z類的東西。” 一 個(gè)金融服務(wù)的首席信息官說?!案纳坪弦?guī)報(bào)告和財(cái)務(wù)報(bào)告很容易實(shí)現(xiàn)。但這說明數(shù)
9、據(jù)分析只 是在錦上添花,并沒有發(fā)揮它的潛力?!眛he real challenge is recognizing that using big data and analytics to better solve problems and/or make decisions obscures the organizational reality that new analytics often requires new behaviors people may need to share and collaborate more; functions may need to set up di
10、fferent or complementary business processes; managers and executives may need to make sure existing incentives don't undermine analytic-enabled opportunities for growth and efficiencies.現(xiàn)在的挑戰(zhàn)是需要意識(shí)到這樣一個(gè)問題:使用人數(shù)據(jù)和數(shù)據(jù)分析來提高解決問題和(或)決 策能力的共識(shí),便人們忽視了一個(gè)組織現(xiàn)實(shí)新數(shù)據(jù)需要新行為。企業(yè)員工需要進(jìn)一步分 享和合作;企業(yè)職能需要建立不同的或者互補(bǔ)的業(yè)務(wù)流程;企業(yè)管理
11、者和執(zhí)行者需要保證現(xiàn) 有的激勵(lì)機(jī)制不會(huì)影響到數(shù)據(jù)分析帶來的發(fā)展和增效機(jī)遇。for example, at one medical supply company, integrating the analytics around "most profitable customers" and "most profitable products" has required a complete re-education of the account sales and technical support teams both for "upsett
12、ing and "educatidients on higher value-added offerings. the company realized that these analytics shouldrft simply be used to support existing sales and services practices but treated as an opport unity to facilitate a new kind of facilitative and consultative sales and support organization.比如說
13、,一個(gè)藥甜供應(yīng)公司,在融合有關(guān)公司“最大客戶”和“最賺錢的產(chǎn)品”的信息之后, 進(jìn)一步就如何測(cè)試及提高客戶對(duì)高收益訂單接受能力,對(duì)銷售和技術(shù)支持部門進(jìn)行了重新培 訓(xùn)。這個(gè)公司意識(shí)到,他所獲得的分析結(jié)果不能只用于支持現(xiàn)有的銷傳和服務(wù)事宜,而更是 一個(gè)機(jī)會(huì)一幫助開發(fā)全新的協(xié)助咨詢式銷售,進(jìn)而使整個(gè)機(jī)構(gòu)受益。the quality of big data and analytics, ironically, mattered less than the purpose to which they were put. the most interesting tensions and arguments
14、 consistently revolved around whether the organization would reap the greatest returns from using analytics to better optimize existing process behaviors or get people to behave differently. but the rough consensus was that the most productive conversations centered on how analytics changed behavior
15、s rather than solved problems.不得不說,相比起大數(shù)據(jù)和數(shù)據(jù)分析的用途來說,其質(zhì)量顯得不那么重要了。目詢最有趣的 矛盾和爭(zhēng)論都圍繞這樣一個(gè)問題,即通過使用分析數(shù)據(jù),進(jìn)一步優(yōu)化現(xiàn)冇的業(yè)務(wù)行為或者改 變成員的行為,能不能便機(jī)構(gòu)獲得最大收益。但是,關(guān)于數(shù)據(jù)如何改變行為,而不是如何解 決問題,才是最有成果的對(duì)話。在這一點(diǎn)上,人們基本達(dá)成了共識(shí)?!癿ost people in our organization do better with history lessons than with math lessons, ” one consumer product analyt
16、ics executive told me. "its easier for people to understand how new information and metrics should change how they do things than getting them to understand the underlying algorithms . we've learned the hard way that ,/over-the-wall,/ data and analytics isn't the way for our internal cu
17、stomers to get value from our work."“我們機(jī)構(gòu)里的大多數(shù)人歷史比數(shù)學(xué)學(xué)得好,” 一個(gè)消費(fèi)品分析官告訴我?!叭藗兏菀桌斫?新信息和指標(biāo)如何影響他們做事的方式,而理解信息背后的數(shù)學(xué)問題就很難了我們?cè)谶@ 方面吃過虧,更好的數(shù)據(jù)和分析并不能使內(nèi)部客戶從我們工作屮受益?!眊etting the right answeror even asking the right questionturns out not to be the dominant concern of high roa enterprises the questions, the answersthe data and the analyticsare undeniably important but how those questions, answers and analytics align, or conflict, with individual and i
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第3課時(shí) 街心廣場(chǎng)(說課稿)-2023-2024學(xué)年四年級(jí)下冊(cè)數(shù)學(xué)北師大版
- 1《北京的春節(jié)》說課稿-2023-2024學(xué)年統(tǒng)編版六年級(jí)語文下冊(cè)
- 第二單元 第1課時(shí) 軸對(duì)稱(一)(說課稿)三年級(jí)數(shù)學(xué)下冊(cè)同步高效課堂系列 北師大版
- 第三單元第12課《物聯(lián)網(wǎng)數(shù)據(jù)的匯集與使用》說課稿 2023-2024學(xué)年浙教版(2023)初中信息技術(shù)七年級(jí)下冊(cè)
- 二零二五年度深水區(qū)海上平臺(tái)打樁服務(wù)合同2篇
- 全國浙教版信息技術(shù)高中必修1新授課 2.1信息獲取的方法 說課稿
- 《老子四章》《五石之大瓠》說課稿 2024-2025學(xué)年統(tǒng)編版高中語文選擇性必修上冊(cè)
- 《第三單元 鍵盤指法 10 接觸上排鍵》說課稿-2024-2025學(xué)年浙江攝影版(三起)(2020)信息技術(shù)三年級(jí)上冊(cè)
- 2025年滬科版四年級(jí)語文上冊(cè)階段測(cè)試試卷含答案
- Module 6 Unit 1 Can I have some sweets?(說課稿)-2024-2025學(xué)年外研版(三起) 四年級(jí)上冊(cè)
- 居家辦公培訓(xùn)課件
- (規(guī)劃設(shè)計(jì))家具產(chǎn)業(yè)園項(xiàng)目可行性研究報(bào)告
- 2024中國誠通控股集團(tuán)限公司總部招聘11人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025初級(jí)會(huì)計(jì)理論考試100題及解析
- 2024屆高考英語詞匯3500左右
- 績(jī)效管理數(shù)字化轉(zhuǎn)型
- 2025年山東省高考數(shù)學(xué)模擬試卷(附答案解析)
- 部編人教版小學(xué)4四年級(jí)《道德與法治》下冊(cè)全冊(cè)教案
- 《BIM土建算量與云計(jì)價(jià)》完整課件
- 新客戶建檔協(xié)議書范文范本
- 心房顫動(dòng)診斷和治療中國指南(2023) 解讀
評(píng)論
0/150
提交評(píng)論