




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、MATLAB 作 業(yè) 4 參 考答案MATLAB作業(yè)四參考答案1、用y sin(10t2 3)在(0, 3)區(qū)間內(nèi)生成一組較稀疏的數(shù)據(jù),并用一維數(shù)據(jù)插值的 方法對給出的數(shù)據(jù)進行曲線擬合,并將結(jié)果與理論曲線相比較?!厩蠼狻款愃朴谏厦娴睦樱梢杂脦缀跻恢碌恼Z句得出樣本數(shù)據(jù)和插值效果。>> t=0:0.2:3;y=sin(10*t.A2+3); plot(t,y,'o')ezplot('sin( 102+3)',0,3); hold onx1=0:0.001:3; y1=i nterp1(t,y,x1,'spli ne');plot(x1
2、,y1)由于曲線本身變換太大,所以在目前選定的樣本點下是不可能得出理想插值效果的,因為 樣本數(shù)據(jù)提供的信息量不夠。為了得到好的插值效果,必須增大樣本數(shù)據(jù)的信息量,對本例 來說,必須在快變化區(qū)域減小樣本點的步長。>> hold offt=0:0.1:1,1.1:0.04:3; y=sin( 10X2+3); plot(t,y,'o')ezplot('sin( 102+3)',0,3); hold onx1=0:0.001:3; y1=i nterp1(t,y,x1,'spli ne');plot(x1,y1)2、 用f(x,y) Vex
3、 y sin (xy2 x2y)原型函數(shù)生成一組網(wǎng)絡(luò)數(shù)據(jù)或隨機數(shù)據(jù),分別擬3x y合出曲面,并和原曲面進行比較求解】由下面的語句可以直接生成一組網(wǎng)格數(shù)據(jù),用下面語句還可以還繪制出給定樣本 點是三維表面圖。>> x,y=meshgrid(0.2:0.2:2);z=exp(-x.A2-y.A4).*si n(x.*y.A2+x.A2.*y)./(3*x43+y);surf(x,y,z)選擇新的密集網(wǎng)格,則可以通過二元插值得出插值曲面。對比插值結(jié)果和新網(wǎng)格下的函數(shù) 值精確解,則可以繪制出絕對插值誤差曲面。由插值結(jié)果可見精度是令人滿意的。>> x1,y1=meshgrid(0.
4、2:0.02:2);z1=interp2(x,y,z,x1,y1,'spline');surf(x1,y1,z1)>> z0=exp(-x1.A2-y1.A4).*sin(x1.*y1.A2+x1.A2.*y1)./(3*x1.A3+y1); surf(x1,y1,abs(z1-z0)現(xiàn)在假設(shè)已知的樣本點不是網(wǎng)格形式分布的,而是隨機分布的,則可以用下面語句生成樣 本點,得出分布的二維、三維示意圖。>> x=0.2+1.8*rand(400,1); y=0.2+1.8*rand(400,1);% 仍生成 (0.2,2) 區(qū)間的均勻分布隨機數(shù)z=exp(-x
5、.A2-y.A4).*sin(x.*y.A2+x.A2.*y)./(3*x.A3+y);plot(x,y,'x')figure, plot3(x,y,z,'x')利用下面的語句可以得出三維插值結(jié)果 , 同時可以繪制出插值的絕對誤差曲面,可見插值結(jié)果還是很好的,但由于邊界樣本點信息不能保證,所以不能像網(wǎng)格數(shù)據(jù)那樣對 (0.2,2)區(qū)域,而只能選擇 (0.3,1.9) 區(qū)域進行插值>> x1,y1=meshgrid(0.3:0.02:1.9);z仁griddata(x,y, z,x1,y1,'v4');surf(x1,y1,z1)>
6、> z0=exp(-x1.A2-y1.A4).*si n(x1.*y1.A2+x1.A2.*y1)./(3*x1.A3+y1);surf(x1,y1,abs(z1-z0)3、假設(shè)已知一組數(shù)據(jù),試用插值方法繪制出x ( 2,4.9)區(qū)間內(nèi)的光滑函數(shù)曲線,比較各種插值算法的優(yōu)劣。Xi-2-1.7-1.4-1.1-0.8-0.5-0.20.10.40.711.3yi.10289.11741.13158.14483.15656.16622.17332.1775.17853.17635.17109.16302Xi1.61.92.22.52.83.13.43.744.34.64.9Yi.15255.
7、1402.12655.11219.09768.08353.07015.05786.04687.03729.02914.02236【求解】用下面的語句可以立即得出給定樣本點數(shù)據(jù)的三次插值與樣條插值,得出的結(jié)果如,可見,用兩種插值方法對此例得出的結(jié)果幾乎一致,效果均很理想。>> x=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,;y=0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,.0.1775,0.17853,0.17635,0.17109,0.16302,0.15
8、255,0.1402,.0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,.0.03729,0.02914,0.02236;x0=-2:0.02:4.9;y1=i nterp1(x,y,x0,'cubic');y2=i nterp1(x,y,x0,'spli ne');plot(x0,y1,':',x0,y2,x,y,'o')4、假設(shè)已知實測數(shù)據(jù)由下表給出,試對(x,y)在(0.1,0.1)(1.1,1.1)區(qū)域內(nèi)的點進行插值,并用三維曲面的方式繪制出插值結(jié)果。yiX1
9、X2X3X4X5X6X7XX9X10X1100.10.20.30.40.50.60.70.80.911.10.1.83041.82727.82406.82098.81824.8161.81481.81463.81579.81853.823040.2.83172.83249.83584.84201.85125.86376.87975.89935.92263.94959.98010.3.83587.84345.85631.87466.89867.9284.963771.00451.05021.11.15290.4.84286.86013.88537.91865.959851.00861.06421
10、.12531.19041.2571.32220.5.85268.88251.92286.973461.03361.10191.17641.2541.33081.40171.46050.6r.86532.91049.968471.03831.1181.20461.29371.37931.45391.50861.53350.7r.88078.943961.02171.11181.21021.3111.40631.48591.53771.54841.50520.8.89904.982761.0821.19221.30611.41381.50211.55551.55731.49151.3460.9r.
11、920061.02661.14821.27681.40051.50341.56611.56781.48891.31561.04541r.943811.07521.21911.36241.48661.56841.58211.50321.3151.0155.624771.1.970231.12791.29291.44481.55641.59641.53411.34731.0321.61268.14763【求解】直接采用插值方法可以解決該問題,得出的插值曲面>> x,y=meshgrid(0.1:0.1:1.1);z=0.83041,0.82727,0.82406,0.82098,0.8
12、1824,0.8161,0.81481,0.81463,0.81579,0.81 853,0.82304;0.83172,0.83249,0.83584,0.84201,0.85125,0.86376,0.87975,0.89935,0.92263,0.949 59,0.9801;0.83587,0.84345,0.85631,0.87466,0.89867,0.9284,0.96377,1.0045,1.0502,1.1,1.152 9;0.84286,0.86013,0.88537,0.91865,0.95985,1.0086,1.0642,1.1253,1.1904,1.257,1.32
13、 22;0.85268,0.88251,0.92286,0.97346,1.0336,1.1019,1.1764,1.254,1.3308,1.4017,1.460 5;0.86532,0.91049,0.96847,1.0383,1.118,1.2046,1.2937,1.3793,1.4539,1.5086,1.5335;0.88078,0.94396,1.0217,1.1118,1.2102,1.311,1.4063,1.4859,1.5377,1.5484,1.5052;0.89904,0.98276,1.082,1.1922,1.3061,1.4138,1.5021,1.5555,1
14、.5573,1.4915,1.346; 0.92006,1.0266,1.1482,1.2768,1.4005,1.5034,1.5661,1.5678,1.4889,1.3156,1.0454;0.94381,1.0752,1.2191,1.3624,1.4866,1.5684,1.5821,1.5032,1.315,1.0155,0.62477;0.97023,1.1279,1.2929,1.4448,1.5564,1.5964,1.5341,1.3473,1.0321,0.61268,0.14763;x1,y1=meshgrid(0.1:0.02:1.1);z1=interp2(x,y,
15、z,x1,y1,'spline');surf(x1,y1,z1)axis(0.1,1.1,0.1,1.1,min(z1(:),max(z1(:)其實,若光需要插值曲面而不追求插值數(shù)值的話,完全可以直接采用MATLABF的shadi nginterp 命令來實現(xiàn)??梢?,這樣的插值方法更好,得出的插值曲面更光滑。>> surf(x,y,z); shading interp5、習(xí)題 3和 4給出的數(shù)據(jù)分別為一元數(shù)據(jù)和二元數(shù)據(jù),試用分段三次樣條函數(shù)和 B 樣條函數(shù)對其進行擬合?!厩蠼狻肯瓤紤]習(xí)題4,相應(yīng)的三次樣條插值和B-樣條插值原函數(shù)與導(dǎo)數(shù)函數(shù)分別為:>> x
16、=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,.;y=0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,.0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,.0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,.0.03729,0.02914,0.02236;S=csapi(x,y); S1=spapi(6,x,y);fnplt(S); hold on; fn
17、plt(S1)>> Sd=fnder(S); Sd1=fnder(S1);fnplt(Sd), hold on; fnplt(Sd1)再考慮習(xí)題 5 中的數(shù)據(jù),原始數(shù)據(jù)不能直接用于樣條處理,因為 meshgrid() 函數(shù)產(chǎn)生的數(shù)據(jù)格式與要求的ndgrid()函數(shù)不一致,所以需要對數(shù)據(jù)進行處理,其中需要的x和y均應(yīng)該是向量,而z是原來z矩陣的轉(zhuǎn)置,所以用下面的語句可以建立起三次樣條和B-樣條的插值模型,函數(shù)的表面圖所示,可見二者得出的結(jié)果很接近。>> x,y=meshgrid(0:0.1:1.1); z=0.83041,0.82727,0.82406,0.82098,0
18、.81824,0.8161,0.81481,0.81463,0.81579,0.81 853,0.82304;0.83172,0.83249,0.83584,0.84201,0.85125,0.86376,0.87975,0.89935,0.92263,0.949 59,0.9801;0.83587,0.84345,0.85631,0.87466,0.89867,0.9284,0.96377,1.0045,1.0502,1.1,1.1529;0.84286,0.86013,0.88537,0.91865,0.95985,1.0086,1.0642,1.1253,1.1904,1.257,1.3
19、222;0.85268,0.88251,0.92286,0.97346,1.0336,1.1019,1.1764,1.254,1.3308,1.4017,1.4605;0.86532,0.91049,0.96847,1.0383,1.118,1.2046,1.2937,1.3793,1.4539,1.5086,1.5335;0.88078,0.94396,1.0217,1.1118,1.2102,1.311,1.4063,1.4859,1.5377,1.5484,1.5052;0.89904,0.98276,1.082,1.1922,1.3061,1.4138,1.5021,1.5555,1.
20、5573,1.4915,1.346;0.92006,1.0266,1.1482,1.2768,1.4005,1.5034,1.5661,1.5678,1.4889,1.3156,1.0454;0.94381,1.0752,1.2191,1.3624,1.4866,1.5684,1.5821,1.5032,1.315,1.0155,0.62477;0.97023,1.1279,1.2929,1.4448,1.5564,1.5964,1.5341,1.3473,1.0321,0.61268,0.14763;>> x0=0.0:0.1:1; y0=x0; z=z'S=csapi(
21、x0,y0,z); fnplt(S)figure; S1=spapi(5,5,x0,y0,z); fnplt(S1)>> S1x=fnder(S1,0,1); fnplt(S1x)figure; S1y=fnder(S1,0,1); fnplt(S1y)6、重新考慮習(xí)題 3 中給出的數(shù)據(jù),試考慮用多項式插值的方法對其數(shù)據(jù)進行逼近,并選 擇一個能較好擬合原數(shù)據(jù)的多項式階次。【求解】可以選擇不同的多項式階次,例如選擇 3,5,7,9,11 ,則可以對其進行多項式擬 合,并繪制出曲線。>> x=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,
22、0.7,1,1.3,.;y=0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,.0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,.0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,.0.03729,0.02914,0.02236;x0=-2:0.02:4.9;p3=polyfit(x,y,3); y3=polyval(p3,x0);p5=polyfit(x,y,5); y5=polyval(p5,x0);p7=p
23、olyfit(x,y,7); y7=polyval(p7,x0);p9=polyfit(x,y,9); y9=polyval(p9,x0);pl 1= polyfit(x,y,11); y1仁polyval(p11,xO);plot(x0,y3; y5; y7; y9; y11)從擬合的結(jié)果可以發(fā)現(xiàn),選擇5次多項式就能較好地擬合原始數(shù)據(jù)7、假設(shè)習(xí)題3中給出的數(shù)據(jù)滿足原型y(x)2/2 2試用最小二乘法求出的值,并用得出的函數(shù)將函數(shù)曲線繪制出來,觀察擬合效果?!厩蠼狻苛?14y(x)1則可以將原型函數(shù)寫成1(x a )2/ 2a22這時可以寫出原型函數(shù)為>> f=in li ne(&
24、#39;exp(-(x-a(1)A2/2/a (2) A2)/(sqrt(2*pi)*a(2)','a','x');由原型函數(shù)則可以用下面的語句擬合出待定參數(shù)31,32,。這樣,擬合曲線得出的擬合效果是滿意的。>> x=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,;y=0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,.0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402
25、,.0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,.0.03729,0.02914,0.02236;a=lsqcurvefit(f,1,1,x,y)a =0.34605753554886 2.23400202798747>> x0=-2:0.02:5; y0=f(a,x0);plot(x0,y0,x,y,'o')8、假設(shè)習(xí)題 4中數(shù)據(jù)的原型函數(shù)為 z(x,y) asin(x2 y) b cos( y 2x ) cx2 dxy e ,試用最小二乘方法識別出a,b,c,d,e的數(shù)值?!厩蠼狻坑孟旅娴恼Z句可
26、以用最小二乘的得出>> x,y=meshgrid(0.1:0.1:1.1);z=0.83041,0.82727,0.82406,0.82098,0.81824,0.8161,0.81481,0.81463,0.81579,0.81 853,0.82304;0.83172,0.83249,0.83584,0.84201,0.85125,0.86376,0.87975,0.89935,0.92263,0.949 59,0.9801;0.83587,0.84345,0.85631,0.87466,0.89867,0.9284,0.96377,1.0045,1.0502,1.1,1.152
27、 9;0.84286,0.86013,0.88537,0.91865,0.95985,1.0086,1.0642,1.1253,1.1904,1.257,1.32 22;0.85268,0.88251,0.92286,0.97346,1.0336,1.1019,1.1764,1.254,1.3308,1.4017,1.460 5;0.86532,0.91049,0.96847,1.0383,1.118,1.2046,1.2937,1.3793,1.4539,1.5086,1.5335;0.88078,0.94396,1.0217,1.1118,1.2102,1.311,1.4063,1.4859,1.5377,1.5484,1.5052;0.89904,0.98276,1.082,1.1922,1.3061,1.4138,1.5021,1.5555,1.5573,1.4915,1.346;0.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO/IEC 24741:2024 EN Information technology - Biometrics - Overview and application
- 【正版授權(quán)】 ISO 24322:2024 EN Timber structures - Methods of test for evaluation of long-term performance - Part 1: Wood-based products in bending
- 【正版授權(quán)】 ISO 5284:2025 EN Conveyor belts - List of equivalent terms
- 【正版授權(quán)】 ISO 22915-1:2024 EN Industrial trucks - Verification of stability - Part 1: General
- 2025年度高新技術(shù)產(chǎn)業(yè)園區(qū)運營承包經(jīng)營合同
- 生物技術(shù)課程導(dǎo)入計劃
- 各行各業(yè)主管的共性與差異計劃
- 校外美術(shù)實踐基地建設(shè)計劃
- 老年醫(yī)學(xué)科醫(yī)生工作計劃
- 2025年灌裝機系列設(shè)備合作協(xié)議書
- 黑龍江省哈爾濱市香坊區(qū)風(fēng)華教育集團2022-2023學(xué)年五年級下學(xué)期期末英語試題
- 裝配式建筑預(yù)制構(gòu)件運輸與堆放-預(yù)制構(gòu)件運輸基本要求
- Ar-CO2 混合氣安全技術(shù)說明書
- 騰訊招聘測評題庫答案大全
- 《企業(yè)成功轉(zhuǎn)型》課件
- 接地電阻的計算
- 小學(xué)傳承經(jīng)典筑夢未來演講稿500字11篇
- 五年級上冊數(shù)學(xué)應(yīng)用題100題及答案
- 2024年4月重慶公務(wù)員考試申論真題及答案解析
- 2024年南京科技職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 懷念戰(zhàn)友混聲四部合唱譜
評論
0/150
提交評論