版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第第1 1章章 投影法和點(diǎn)、直線、平面的投影投影法和點(diǎn)、直線、平面的投影 1.2 點(diǎn)的投影點(diǎn)的投影 1.3 直線的投影直線的投影 1.4 求線段實(shí)長(zhǎng)及對(duì)投影面的傾角求線段實(shí)長(zhǎng)及對(duì)投影面的傾角 1.5 兩直線的相對(duì)位置兩直線的相對(duì)位置 1.6 平面的投影平面的投影 1.1 投影法的基本知識(shí)投影法的基本知識(shí)返回1.1 投影法的基本知識(shí)投影法的基本知識(shí) 1.1.1 1.1.1 投影法概念投影法概念 1.1.2 1.1.2 投影法的分類投影法的分類 1.1.3 1.1.3 正投影法的基本性質(zhì)正投影法的基本性質(zhì) 1.1.1 1.1.1 投影法的概念投影法的概念投影面投影面Pa 投影投影投射線投射線bS
2、投影中心投影中心A 空間點(diǎn)空間點(diǎn)B 將光線通過物體向選定的平面投影,并在該平面上得將光線通過物體向選定的平面投影,并在該平面上得到物體影子的方法稱為投影法。到物體影子的方法稱為投影法。 1.1.2 投影法的分類 1. 1. 中心投影法中心投影法 投射線匯交于一點(diǎn)。投射線匯交于一點(diǎn)。 2. 2. 平行投影法平行投影法 投射線互相平行。投射線互相平行。 (1 1)斜投影斜投影 投射線與投影面傾斜的平行投影投射線與投影面傾斜的平行投影。 (2 2)正投影正投影 投射線與投影面垂直的平行投影。投射線與投影面垂直的平行投影。1. 1. 中心投影法中心投影法HS2.2.平行投影法平行投影法-斜投影斜投影H
3、2.2.平行投影法平行投影法-正投影正投影90H 1.1.3 1.1.3 正正投影法的基本性質(zhì)投影法的基本性質(zhì) 1.1. 實(shí)形性實(shí)形性 當(dāng)線段或平面平行于投影面時(shí),當(dāng)線段或平面平行于投影面時(shí),其投影反映實(shí)長(zhǎng)或?qū)嵭巍F渫队胺从硨?shí)長(zhǎng)或?qū)嵭巍?2.2. 積聚性積聚性 當(dāng)線段或平面垂直于投影面時(shí),當(dāng)線段或平面垂直于投影面時(shí),其投影積聚為點(diǎn)或線段。其投影積聚為點(diǎn)或線段。 3.3. 類似性類似性 當(dāng)線段或平面傾斜于投影面時(shí),當(dāng)線段或平面傾斜于投影面時(shí),其投影變短或變小。其投影變短或變小。1. 1. 實(shí)形性實(shí)形性CDEBAHabedc當(dāng)線段或平面平行于投影面時(shí),其投影反映實(shí)長(zhǎng)或?qū)嵭?。?dāng)線段或平面平行于投影面
4、時(shí),其投影反映實(shí)長(zhǎng)或?qū)嵭巍dca(b)CDEBAH2. 2. 積聚性積聚性當(dāng)線段或平面垂直于投影面時(shí),其投影積聚為點(diǎn)或線段。當(dāng)線段或平面垂直于投影面時(shí),其投影積聚為點(diǎn)或線段。3. 3. 類似性類似性CDEedcBAabH當(dāng)線段或平面傾斜于投影面時(shí),其投影變短或變小。當(dāng)線段或平面傾斜于投影面時(shí),其投影變短或變小。1.1 點(diǎn)的投影點(diǎn)的投影1.1.1 點(diǎn)在兩投影面體系中的投影點(diǎn)在兩投影面體系中的投影1.1.2 點(diǎn)在三投影面體系中的投影點(diǎn)在三投影面體系中的投影1.1.3 兩點(diǎn)的相對(duì)位置和重影點(diǎn)兩點(diǎn)的相對(duì)位置和重影點(diǎn)1.1.1 1.1.1 點(diǎn)在兩投影面體系中的投影點(diǎn)在兩投影面體系中的投影 5. 點(diǎn)在其
5、他分角的投影點(diǎn)在其他分角的投影 3. 點(diǎn)的兩面投影圖點(diǎn)的兩面投影圖 2. 兩投影面體系的建立兩投影面體系的建立 4.4.兩投影面體系中點(diǎn)的兩投影面體系中點(diǎn)的投影規(guī)律投影規(guī)律 1. 點(diǎn)的兩個(gè)投影能唯一確定該點(diǎn)的空間位置點(diǎn)的兩個(gè)投影能唯一確定該點(diǎn)的空間位置1. 點(diǎn)的兩個(gè)投影能唯一確定該點(diǎn)的空間位置點(diǎn)的兩個(gè)投影能唯一確定該點(diǎn)的空間位置HVOXa aA2. .兩投影面體系的建立兩投影面體系的建立XO 兩投影面體系由兩投影面體系由V面和面和H面二個(gè)投影面構(gòu)成。面二個(gè)投影面構(gòu)成。V面和面和H面面將空間分成四個(gè)分角。處在前、上側(cè)的那個(gè)分角稱為第一分將空間分成四個(gè)分角。處在前、上側(cè)的那個(gè)分角稱為第一分角。我們
6、通常把物體放在第一分角中來研究。角。我們通常把物體放在第一分角中來研究。正立投影面正立投影面投影軸投影軸VH水平投影面水平投影面3. .點(diǎn)的兩面投影圖點(diǎn)的兩面投影圖HVOXaAa 點(diǎn)的二面投影圖是將空間點(diǎn)向二個(gè)投影面作正投影點(diǎn)的二面投影圖是將空間點(diǎn)向二個(gè)投影面作正投影后,將二個(gè)投影面展開在同一個(gè)面后得到的。后,將二個(gè)投影面展開在同一個(gè)面后得到的。點(diǎn)點(diǎn)A的正面投影的正面投影點(diǎn)點(diǎn)A的水平投影的水平投影XHVOa aax兩面兩面投影圖的畫法投影圖的畫法HHVOXa aAax 展開時(shí),規(guī)定V面不動(dòng),H面向下旋轉(zhuǎn)90。用投影圖來表示空間點(diǎn),其實(shí)質(zhì)是在同一平面上用點(diǎn)在二個(gè)不同投影面上的投影來表示點(diǎn)的空間位
7、置。通常不畫出投影面的范圍通常不畫出投影面的范圍XOa aax4 4. .兩兩投影投影面體系中點(diǎn)的投影規(guī)律面體系中點(diǎn)的投影規(guī)律HVOXa aAaxXOa aax 點(diǎn)的點(diǎn)的V面投影與面投影與H面投影之間的連線面投影之間的連線aa垂直于投影軸垂直于投影軸0X ;點(diǎn)的一個(gè)投影到點(diǎn)的一個(gè)投影到0X投影軸的距離等于空間點(diǎn)到與該投影軸相鄰?fù)队拜S的距離等于空間點(diǎn)到與該投影軸相鄰的投影面之間的距離,即的投影面之間的距離,即 aax= Aa, aax= Aa 。 1.2.2 1.2.2 點(diǎn)在三投影面體系中的投影點(diǎn)在三投影面體系中的投影 1. 1.三投影面體系的建立三投影面體系的建立 2. 2.點(diǎn)的三面投影圖點(diǎn)的
8、三面投影圖 3. 3.點(diǎn)的三面投影與直角坐標(biāo)的關(guān)系點(diǎn)的三面投影與直角坐標(biāo)的關(guān)系 4. 4.三投影面體系中點(diǎn)的投影規(guī)律三投影面體系中點(diǎn)的投影規(guī)律 5. 5.特殊點(diǎn)的投影特殊點(diǎn)的投影1. 1. 三投影面體系的建立三投影面體系的建立HVXOZYW 三投影面體系由三投影面體系由V、H、W三個(gè)投影面構(gòu)成。三個(gè)投影面構(gòu)成。 H、V、W面將空間分成八個(gè)分角,處在前、上、左側(cè)的那個(gè)分角稱面將空間分成八個(gè)分角,處在前、上、左側(cè)的那個(gè)分角稱為第一分角。我們通常把物體放在第一分角中來研究。為第一分角。我們通常把物體放在第一分角中來研究。 2. 2. 點(diǎn)的三面投影圖點(diǎn)的三面投影圖HVXZYWOA 點(diǎn)的三面投影圖是將空
9、間點(diǎn)向三個(gè)投影面作正投影后,將三點(diǎn)的三面投影圖是將空間點(diǎn)向三個(gè)投影面作正投影后,將三個(gè)投影面展開在同一個(gè)面后得到的。展開時(shí),規(guī)定個(gè)投影面展開在同一個(gè)面后得到的。展開時(shí),規(guī)定V面不動(dòng),面不動(dòng),H面向下旋轉(zhuǎn)面向下旋轉(zhuǎn)90 ,W面向右旋轉(zhuǎn)面向右旋轉(zhuǎn)90 。a aa Ha aa VWXOZYWYHa aa XOZYWYH通常不畫出投影面的范圍通常不畫出投影面的范圍HVXZYWOayaxazxyza aa Ha aa VWXOZYWYHaxayazay3. 點(diǎn)的三面投影與直角坐標(biāo)的關(guān)系點(diǎn)的三面投影與直角坐標(biāo)的關(guān)系 若把三個(gè)投影面當(dāng)作空間直角坐標(biāo)面,投影軸當(dāng)作直角坐標(biāo)軸,若把三個(gè)投影面當(dāng)作空間直角坐標(biāo)面,
10、投影軸當(dāng)作直角坐標(biāo)軸,則點(diǎn)的空間位置可用其(則點(diǎn)的空間位置可用其(X、Y、Z)三個(gè)坐標(biāo)來確定,點(diǎn)的投影)三個(gè)坐標(biāo)來確定,點(diǎn)的投影就反映了點(diǎn)的坐標(biāo)值,其投影與坐標(biāo)值之間存在著對(duì)應(yīng)關(guān)系。就反映了點(diǎn)的坐標(biāo)值,其投影與坐標(biāo)值之間存在著對(duì)應(yīng)關(guān)系。yAxAzA4. 三投影面體系中點(diǎn)的投影規(guī)律三投影面體系中點(diǎn)的投影規(guī)律HVXZYWOayaxazxyza aa a aa XOZYWYHaxayazay 點(diǎn)的點(diǎn)的V面投影與面投影與H面投影之間的連線垂直于面投影之間的連線垂直于0X軸,即軸,即aa0X ;點(diǎn)的點(diǎn)的V面投影與面投影與W面投影之間的連線垂直面投影之間的連線垂直0Z軸,即軸,即a a“0Z;點(diǎn);點(diǎn)的的H
11、面投影到面投影到0X軸的距離及點(diǎn)的軸的距離及點(diǎn)的W面投影到面投影到0Z 軸的距離兩者相等軸的距離兩者相等,都反映點(diǎn)到,都反映點(diǎn)到V面的距離。面的距離。 長(zhǎng)對(duì)正長(zhǎng)對(duì)正 高平齊高平齊 寬相等寬相等5. 5. 特殊位置點(diǎn)的投影特殊位置點(diǎn)的投影OXb bc cHVOXCcca bBb Aaa a 投影面上的點(diǎn) 投影軸上的點(diǎn) 與原點(diǎn)重合的點(diǎn)三面投影體系中特殊位置的點(diǎn)投影例例1 1 已知點(diǎn)已知點(diǎn)A A的正面與側(cè)面投影,求點(diǎn)的正面與側(cè)面投影,求點(diǎn)A A的水平投影。的水平投影。ZYHXYWOa a aXOZY1.1. 兩點(diǎn)的相對(duì)位置兩點(diǎn)的相對(duì)位置a a ab b bBA 兩點(diǎn)的相對(duì)位置是根據(jù)兩點(diǎn)相對(duì)于投影面的
12、距離遠(yuǎn)近(或坐標(biāo)大小)來確定的。X坐標(biāo)值大的點(diǎn)在左;Y坐標(biāo)值大的點(diǎn)在前;Z坐標(biāo)值大的點(diǎn)在上。 XZYWYHOa a ab bb 2. 2. 重影點(diǎn)重影點(diǎn)c(c)dda(b)abAB 若兩點(diǎn)位于同一條垂直某投影面的投射線上,則這兩點(diǎn)在該投影面上的投影重合,這兩點(diǎn)稱為該投影面的重影點(diǎn)。CDXYHZYWOc(d)ba(b)acda b c d 判斷重影點(diǎn)的可見性時(shí),需要看重影點(diǎn)在另一投影面上的投影,坐標(biāo)值大的點(diǎn)投影可見,反之不可見,不可見點(diǎn)的投影加括號(hào)表示。 例例2 2 已知已知A A點(diǎn)在點(diǎn)在B B點(diǎn)的右點(diǎn)的右1010毫米、前毫米、前6 6毫米、上毫米、上1212毫米,求毫米,求A A點(diǎn)的點(diǎn)的投影。
13、投影。a a aXZYWYHOb bb 121061.3 直線的投影直線的投影 1.3.1 直線的三面投影直線的三面投影 1.3.2 直線對(duì)投影面的相對(duì)位置直線對(duì)投影面的相對(duì)位置 1.3.3 直線上的點(diǎn)直線上的點(diǎn)OXZY1.3.1 1.3.1 直線的三面投影直線的三面投影ABbb a b aa ZXa b aOYYa bb 空間任何一直線可由直線上任意兩點(diǎn)所確定,直線在某一投影面的投影可由該直線上某兩點(diǎn)的同面投影所確定。1.3.2 1.3.2 直線對(duì)投影面的相對(duì)位置直線對(duì)投影面的相對(duì)位置 1.1.投影面平行線投影面平行線 平行于某一投影面,與另外兩個(gè)投影面傾斜的直線平行于某一投影面,與另外兩個(gè)
14、投影面傾斜的直線 (1)(1) 水平線水平線 (2)(2) 正平線正平線 (3)(3) 側(cè)平線側(cè)平線 2.2.投影面垂直線投影面垂直線 垂直于某一投影面的直線垂直于某一投影面的直線 (1)(1) 鉛垂線鉛垂線 (2)(2) 正垂線正垂線 (3)(3) 側(cè)垂線側(cè)垂線 3.3.一般位置直線一般位置直線 與三個(gè)投影面都傾斜的直線與三個(gè)投影面都傾斜的直線 水平線水平線 平行于水平投影面的直線平行于水平投影面的直線XZYOaababb Xa b ab OzYHYWbaAB投影特性:1. ab OX ; ab OYW 2. ab=AB 3. 反映、 角的真實(shí)大小XZYO正平線 平行于正面投影面的直線Xab
15、ab baOZYHYWAB 投影特性:投影特性: 1、ab OX ; a b OZ 2、a b =AB 3、反映、反映 、 角的真實(shí)大小角的真實(shí)大小aababbXZYO側(cè)平線 平行于側(cè)面投影面的直線XZOYHYWa b babaAB投影特性:投影特性: 1、a b OZ ; ab OYH 2、a b =AB 3 、反映、反映 、 角的真實(shí)大小角的真實(shí)大小aa b a bbOXZYZb Xa ba(b)OYHYWa投影特性:投影特性:1、a b 積聚積聚 成一點(diǎn)成一點(diǎn) 2、 a bOX ; a b OY 3、 a b = a b = AB鉛垂線 垂直于水平投影面的直線ABb a(b)a ab正垂
16、線 垂直于正面投影面的直線OXZY投影特性:投影特性: 1、 a b 積聚積聚 成一點(diǎn)成一點(diǎn) 2 、 ab OX ; a b OZ 3 、 ab = a b =ABABzXab baOYHYWabbababa側(cè)垂線 垂直于側(cè)面投影面的直線OXZYAB投影特性:投影特性: 1、a b 積聚積聚 成一點(diǎn)成一點(diǎn) 2 、 ab OYH ; a b OZ 3 、 ab = a b =ABbaababZXabbaOYHYWabOXZY 一般位置直線ABbbabaaZXabaOYHYWabb投影特性:投影特性:1、a b、 a b 、a b 均小于實(shí)長(zhǎng)均小于實(shí)長(zhǎng) 2 、a b、a b 、a b 均傾斜于投影
17、軸均傾斜于投影軸 3 、 不反映不反映 、 、 實(shí)角實(shí)角直線上的點(diǎn)具有兩個(gè)特性: 1 從屬性 若點(diǎn)在直線上,則點(diǎn)的各個(gè)投影必在直線的各同面投影上。利用這一特性可以在直線上找點(diǎn),或判斷已知點(diǎn)是否在直線上。 2 定比性 屬于線段上的點(diǎn)分割線段之比等于其投影之比。即A C: C B = a c : c b= ac : cb = ac : c b 利用這一特性,在不作側(cè)面投影的情況下,可以在側(cè)平線上找點(diǎn)或判斷已知點(diǎn)是否在側(cè)平線上。 1.3.3 直線上的點(diǎn)ABbbaaXOccCcb Xa abcc 例例3 已知線段已知線段AB的投影圖,試將的投影圖,試將AB分成分成1:2兩段,求分點(diǎn)兩段,求分點(diǎn)C的投影
18、。的投影。O 例例4 已知點(diǎn)已知點(diǎn)C在線段在線段AB上,求點(diǎn)上,求點(diǎn)C的正面投影。的正面投影。bXaabccaccbXOABbbaacCcHVO1.5 1.5 兩直線的相對(duì)位置兩直線的相對(duì)位置(1)兩平行直線在同一投影面上的投影仍平行。)兩平行直線在同一投影面上的投影仍平行。 反之,若兩反之,若兩直線在同一投影面上的投影相互平行,則該兩直線平行。直線在同一投影面上的投影相互平行,則該兩直線平行。(2)平行兩線段之比等于其投影之比。)平行兩線段之比等于其投影之比。XbaadbbccABCDXbaabdcdc1.平行兩直線OO平行線的判斷(1)平行線的判斷(2)平行線的判斷(3)2.相交兩直線 兩
19、相交直線在同一投影面上的投影仍相交,且交點(diǎn)屬于兩相交直線在同一投影面上的投影仍相交,且交點(diǎn)屬于兩直線。兩直線。 反之,若兩直線在同一投影面上的投影相交,且反之,若兩直線在同一投影面上的投影相交,且交點(diǎn)屬于兩直線,則該兩直線相交。交點(diǎn)屬于兩直線,則該兩直線相交。bXaabkcddckXBDACKbbaaccddkkOO3.交叉兩直線 凡不滿足平行和相交條件的直線為交叉兩直線。凡不滿足平行和相交條件的直線為交叉兩直線。 XOBDACbb aa c cdd 211 (2 )21b Xa abc d dc11 (2 )2O判斷重影點(diǎn)的可見性XOBDACbb aa c cdd (3 )4 1(2)433
20、41 2 12 判斷重影點(diǎn)的可見性時(shí),需要看重影點(diǎn)在另一投影面上的投影,坐標(biāo)值大的點(diǎn)投影可見,反之不可見,不可見點(diǎn)的投影加括號(hào)表示。bbcddcXaa3(4)34121(2)例例7 7 判斷兩直線重影點(diǎn)的可見性判斷兩直線重影點(diǎn)的可見性O(shè)dacboYWYHZXaacddcbb例例6 6 判斷兩直線的相對(duì)位置判斷兩直線的相對(duì)位置不用這個(gè)方法!應(yīng)該怎樣做!例題1-3 (14P)非機(jī)非機(jī)p42比例法比例法-直線相交直線相交xo例:判斷直線AB、CD的相對(duì)位置cdcdabba反證法推理反證法推理1.假定相交假定相交2.檢驗(yàn)比例檢驗(yàn)比例.e.21作取a2=ab a1=ae連b2,過1作1e/b2ee不在此
21、處交叉(異面)交叉(異面)例題1-4 (15P)非機(jī)非機(jī)p43直線綜合直線綜合例:已知直線AB、CD、EF。作水平線 MN與AB、CD、EF分 別交于點(diǎn)M、S、T,N點(diǎn)在V面之前6(工程上缺省為工程上缺省為mm)xoabba.cdcdef.e f側(cè)平側(cè)平正垂正垂鉛垂鉛垂讀圖垂線垂線 積聚積聚 水平水平線線 mn/ox比例法定比例法定AB上上的的M點(diǎn)點(diǎn)smtt取a2=aba1=am21.m.6ns.n四四 直線的換面直線的換面1. 將一般位置直線變?yōu)閷⒁话阄恢弥本€變?yōu)橥队懊嫫叫芯€投影面平行線VHXA aBb a bV1X1 a1 b1a1b1 X1V1H ba b aXVH 例1 把一般位置直線
22、AB變?yōu)镠1投影面平行線 babaXHVXH1Va1b1VHXaAabBbH1X1X1H1Va1b1XVHaaa12. 將將投影面平行線投影面平行線變?yōu)橥队懊娲怪本€變?yōu)橥队懊娲怪本€bb 3. 將一般位置直線變?yōu)閷⒁话阄恢弥本€變?yōu)橥队懊娲怪本€投影面垂直線XHaAa b bBVV1X1H1a2 b2 a1 b1將一般位置直線變?yōu)橥队懊娲怪本€XH1V1a aXVHb ba2 b2XHV1a1 b1 aaX b bcc 思考題1 如何求點(diǎn)C到直線AB的距離?XH1V1aaXVHbba2 b2XHV1a1b1提示aaXbb cdcd 思考題2 如何求兩直線AB與CD間的距離?XH1V1aaXVHbba2
23、 b2XHV1a1b1V提示五五 一邊平行于某一投影面的直角的投影一邊平行于某一投影面的直角的投影AHBCacbcXbacba 互相垂直(相交或交叉)的兩直線其中一條為投影面互相垂直(相交或交叉)的兩直線其中一條為投影面平行線時(shí),則兩直線在投影面上的投影必定互相平行線時(shí),則兩直線在投影面上的投影必定互相垂直垂直。 反之,若兩直線在某一投影面上的投影成直角,且其反之,若兩直線在某一投影面上的投影成直角,且其中一條直線平行于該投影面時(shí),則空間兩直線一定中一條直線平行于該投影面時(shí),則空間兩直線一定垂直垂直。O例題1-8 (20P)作交叉二直線AB、CD的公垂線EFXabcdcdab.eff平行線特征
24、e.例:在直線 AB上找一點(diǎn)C使與H、V等距XZYHYwOaabba”b”c”.cc45線另法:作ab 關(guān)于ox的對(duì)稱線得交點(diǎn)c 一般位置線段在投影圖上反映不出線段的實(shí)長(zhǎng)及對(duì)投一般位置線段在投影圖上反映不出線段的實(shí)長(zhǎng)及對(duì)投影面的傾角。影面的傾角。 1.幾何分析幾何分析 2.作圖要領(lǐng)作圖要領(lǐng) 用線段在某一投影面上的投影長(zhǎng)作為一條直角邊,再用線段在某一投影面上的投影長(zhǎng)作為一條直角邊,再以線段的兩端點(diǎn)相對(duì)于該投影面的坐標(biāo)差作為另一條直角以線段的兩端點(diǎn)相對(duì)于該投影面的坐標(biāo)差作為另一條直角邊,所作直角三角形的斜邊即為線段的實(shí)長(zhǎng),斜邊與投影邊,所作直角三角形的斜邊即為線段的實(shí)長(zhǎng),斜邊與投影長(zhǎng)間的夾角即為線
25、段與該投影面的夾角。長(zhǎng)間的夾角即為線段與該投影面的夾角。 3.直角三角形直角三角形的四個(gè)要素的四個(gè)要素 實(shí)長(zhǎng)、投影長(zhǎng)、坐標(biāo)差及直線對(duì)投影面的傾角實(shí)長(zhǎng)、投影長(zhǎng)、坐標(biāo)差及直線對(duì)投影面的傾角。已知。已知四要素中的任意兩個(gè),便可確定另外兩個(gè)。四要素中的任意兩個(gè),便可確定另外兩個(gè)。 六六 一般位置線段的實(shí)長(zhǎng)及對(duì)投影面的傾角一般位置線段的實(shí)長(zhǎng)及對(duì)投影面的傾角(直角三角形法求直線的真長(zhǎng)和對(duì)投影面的傾角)直角三角形法求直線的真長(zhǎng)和對(duì)投影面的傾角)幾何分析|zA-zB |ABABbbaaCXO|zA-zB|XaabbABab|zA-zB|AB|zA-zB|abO 例例5 5 已知已知 線段的實(shí)長(zhǎng)線段的實(shí)長(zhǎng)ABA
26、B以及以及abab和和aa,求它的正面投影,求它的正面投影abab。aXa bAOBb0bb0bb0b b 例題 1-10 (22p)已知線段AB長(zhǎng)30,并與CD平行,求作AB的二面投影Xcdcd.aa可知直線AB的投影,但要定B點(diǎn)用直角三角形法先定CD實(shí)長(zhǎng)zz.由AB長(zhǎng)30.ab.b.b已知等腰三角形的底邊BC屬于水平線MN,頂點(diǎn)A屬于直線EF,又知BC的中點(diǎn)為D,BC和AD等長(zhǎng),求作ABC的投影XefmndabcefmnadbcadzadTLAD已知直角三角形ABC的一直角邊AB/V面;斜邊AC=60,且與H面成60夾角,請(qǐng)完成ABC的投影Xabab60ACac60zACzACcc1.4
27、1.4 平面的投影平面的投影一一 平面的表示法平面的表示法二二 各種位置平面的投影特性各種位置平面的投影特性三三 面上的點(diǎn)和直線面上的點(diǎn)和直線1.4 1.4 平面的表示法平面的表示法1.1. 幾何元素表示平面幾何元素表示平面 用幾何元素表示平面有五種形式:用幾何元素表示平面有五種形式:(1 1)不在一直線上的三個(gè)點(diǎn);)不在一直線上的三個(gè)點(diǎn);(2 2)一直線和直線外一點(diǎn);)一直線和直線外一點(diǎn);(3 3)相交兩直線;)相交兩直線;(4 4)平行兩直線;)平行兩直線;(5 5)任意平面圖形。)任意平面圖形。2.2.平面的跡線表示法平面的跡線表示法 平面的跡線為平面與投影面的交線。特殊位置平面平面的跡
28、線為平面與投影面的交線。特殊位置平面用跡線來表示是用其具有積聚性的一條邊線來表示。用跡線來表示是用其具有積聚性的一條邊線來表示。1. 幾何元素表示法幾何元素表示法aabcbcbaacbcbaacbcaabcbcabcabcdd用幾何元素表示平面有五種形式:用幾何元素表示平面有五種形式:(1 1)不在一直線上的三個(gè)點(diǎn);)不在一直線上的三個(gè)點(diǎn);(2 2)一直線和直線外一點(diǎn);)一直線和直線外一點(diǎn);(3 3)相交兩直線;)相交兩直線;(4 4)平行兩直線;)平行兩直線;(5 5)任意平面圖形。)任意平面圖形。2. 2. 跡線表示法跡線表示法PXPVPHOXZYPHPVPWPZPYPXXOPWPZPYH
29、PYWYHZYW1.4 1.4 各種位置平面的投影特性各種位置平面的投影特性1.1.投影的垂直面投影的垂直面(1)鉛垂面鉛垂面(2)(2)正垂面正垂面(3)(3)側(cè)垂面?zhèn)却姑?.2.投影的平行面投影的平行面(1)水平面水平面(2)(2)正平面正平面(3)(3)側(cè)平面?zhèn)绕矫?.3.一般位置平面一般位置平面鉛垂面鉛垂面投影特性:投影特性:1、 水平投影水平投影abc積聚為一條直線積聚為一條直線 2 、正面投影、正面投影 a b c 、 側(cè)面投影側(cè)面投影a b c 為為 ABC的類似形的類似形 3 、 abc與與OX、 OY的夾角的夾角反映反映 、 角的真實(shí)大小角的真實(shí)大小 VWHPPHABCacb
30、ababbaccc類似性類似性聚積性鉛垂面跡線表示VWHPPHPHPVPW 正垂面正垂面投影特性:1、 正面投影abc 積聚為一條直線 2 、 水平投影abc、側(cè)面投影abc是 ABC的類似形 3 、 abc與OX、 OZ的夾角反映、 角的真實(shí)大小 VWHQQVababbacccAcCabB類似性類似性聚積性正垂面的跡線表示VWHQQVQV側(cè)垂面投影特性:投影特性:1、 側(cè)面投影側(cè)面投影a b c 積聚為一條直線積聚為一條直線 2 、 水平投影水平投影abc、正面投影、正面投影 a b c 為為 ABC的類似形的類似形 3 、 a b c 與與OZ、 OY的夾角的夾角反映反映、角的真實(shí)大小角的
31、真實(shí)大小 VWHSWSCabABcabbbaaccc聚積性類似性類似性側(cè)垂面的跡線表示VWHSHSZXOYHSHY水平面水平面VWHCABabcbacabccabbbaacc投影特性:投影特性: 1. a b c 、 a b c 積聚為一條線積聚為一直條線,具有積聚性積聚為一條線積聚為一直條線,具有積聚性 2. 水平投影水平投影abc反映反映 ABC實(shí)形實(shí)形 積聚性實(shí)形性積聚性 正平面正平面VWHcabbacbcabacabcbcaCBA投影特性:投影特性: 1. 1. abcabc 、 a a b b c c 積聚為一條直線,具有積聚性積聚為一條直線,具有積聚性 2.2.正平面投影正平面投影
32、a a b b c c 反映反映 ABCABC實(shí)形實(shí)形 積聚性實(shí)形性積聚性 側(cè)平面?zhèn)绕矫鎂WHabbbacccabcbacabcCABa投影特性:投影特性: 1. abc 、 a b c 積聚為一直條線,具有積聚性積聚為一直條線,具有積聚性 2. 側(cè)平面投影側(cè)平面投影a b c 反映反映 ABC實(shí)形實(shí)形 積聚性實(shí)形性積聚性 一般位置平面一般位置平面abcbacababbaccbacCAB投影特性投影特性 1. abc 、 a b c 、 a b c 均為均為 ABC的類似形的類似形 2. 不反映不反映 、 、 的真實(shí)角度的真實(shí)角度 類似性類似性類似性1.4 1.4 平面上的點(diǎn)和直線平面上的點(diǎn)和
33、直線(1 1) 平面上的直線平面上的直線 直線在平面上的幾何條件是:直線在平面上的幾何條件是:通過平面上的兩點(diǎn);通過平面上的兩點(diǎn);通通過平面上的一點(diǎn)且平行于平面上的一條直線。過平面上的一點(diǎn)且平行于平面上的一條直線。(2 2) 平面上的點(diǎn)平面上的點(diǎn) 點(diǎn)在平面上的幾何條件是:點(diǎn)在平面內(nèi)的某一直線上。點(diǎn)在平面上的幾何條件是:點(diǎn)在平面內(nèi)的某一直線上。 在平面上取點(diǎn)、直線的作圖,實(shí)質(zhì)上就是在平面內(nèi)作輔助在平面上取點(diǎn)、直線的作圖,實(shí)質(zhì)上就是在平面內(nèi)作輔助線的問題。利用在平面上取點(diǎn)、直線的作圖,可以解決三類問線的問題。利用在平面上取點(diǎn)、直線的作圖,可以解決三類問題:判別已知點(diǎn)、線是否屬于已知平面;完成已知平
34、面上的點(diǎn)題:判別已知點(diǎn)、線是否屬于已知平面;完成已知平面上的點(diǎn)和直線的投影;完成多邊形的投影。和直線的投影;完成多邊形的投影。一一. . 平面上取直線和點(diǎn)平面上取直線和點(diǎn)(1 1) 平面上取直線平面上取直線 屬于平面上的直線,該直線一定經(jīng)過屬于該平面的已知兩點(diǎn);屬于平面上的直線,該直線一定經(jīng)過屬于該平面的已知兩點(diǎn);或經(jīng)過屬于該平面的一已知點(diǎn),且平行于屬于該平面的一已知直或經(jīng)過屬于該平面的一已知點(diǎn),且平行于屬于該平面的一已知直線。線。abcabcddeeABCEDFff(2 2) 平面上取點(diǎn)平面上取點(diǎn)ABCDEabcabcddee點(diǎn)在平面上,該點(diǎn)一定在平面內(nèi)的一直線上。點(diǎn)在平面上,該點(diǎn)一定在平面
35、內(nèi)的一直線上。例例已知已知 ABC ABC 給定一平面,(給定一平面,(1 1)判斷點(diǎn))判斷點(diǎn)K K是否屬于該平面。是否屬于該平面。(2 2)已知平面上一點(diǎn))已知平面上一點(diǎn)E E的正面投影的正面投影e e作出水平投影。作出水平投影。k kabcabcddee11XO2. 2. 平面上的特殊位置直線平面上的特殊位置直線VHPPVPH(1)平面上投影面平行線)平面上投影面平行線既在平面上又平行于投影面的直線既在平面上又平行于投影面的直線。 在一個(gè)平面上對(duì)在一個(gè)平面上對(duì)V V、H H、W W投影面分別有三組投影面平行線。平面上的投影面分別有三組投影面平行線。平面上的投影面平行線既具有投影面平行線的投
36、影性質(zhì),又與所屬平面保持從屬關(guān)投影面平行線既具有投影面平行線的投影性質(zhì),又與所屬平面保持從屬關(guān)系。系。水平線正平線例例abcbacmnnm已知已知 ABCABC給定一平面,試過點(diǎn)給定一平面,試過點(diǎn)C C作屬于該平面的正平線,作屬于該平面的正平線,過點(diǎn)過點(diǎn)A A作屬于該平面作屬于該平面 的水平線。的水平線。例例已知點(diǎn)已知點(diǎn)E E 在在 ABCABC平面上,且點(diǎn)平面上,且點(diǎn)E E距離距離H H面面1515,距離,距離V V 面面1010,試求點(diǎn)試求點(diǎn)E E的投影。的投影。Xabcbacmnmnrsrs1015eeVAHCB c bX aa bca1c1b1V1X1X1V/H 體系變?yōu)閂1/H 體系
37、c1b1a1bcabacX1. 新投影體系的建立新投影體系的建立六六 平面的換面平面的換面(1 1)新投影面必須和空間幾何元素處于有利解題的位置。)新投影面必須和空間幾何元素處于有利解題的位置。(2 2)新投影面必須垂直于原投影體系中的某一個(gè)投影面。)新投影面必須垂直于原投影體系中的某一個(gè)投影面。VAHCBc bX aabc V1X1c1 b1a12. 新投影面的選擇原則新投影面的選擇原則a cXVHbb ac VH Xcba bCA cBa ddDX1H1a1c1b1 d1 dX1H1V db1 a1c1d11. 將一般位置平面變?yōu)橥队懊娲怪泵鎸⒁话阄恢闷矫孀優(yōu)橥队懊娲怪泵鎘1X1H1Vb1
38、a1c1 d1s1acb ba c ddss 例3 求點(diǎn)S到平面ABC的距離HXVCAcbaB2. 將將投影面垂直面投影面垂直面變?yōu)樽優(yōu)橥队懊嫫叫忻嫱队懊嫫叫忻鎄1V1c1b1a1V1c1b1a1X1a1c1b1X1bca b acXVH a cbXX1V1c1 b1a1b caa cXVHbbac d db1 a1c1d1X1H1Va2c2b2d2X2V2H13. 將一般位置平將一般位置平面面變?yōu)樽優(yōu)橥队懊嫫叫忻嫱队懊嫫叫忻?例5 已知點(diǎn)E在平面ABC上,距離A、B為15,求E點(diǎn)的投影。a cXVHbbac d db1 a1c1d1X1H1Va2c2b2d2X2V2H11515eee1e21
39、.5 1.5 直線與平面、直線與平面、平面與平面的相對(duì)位置平面與平面的相對(duì)位置 1.7.1 平行問題平行問題1 相交問題相交問題2 平行問題平行問題3 垂直問題垂直問題4 綜合問題分析綜合問題分析相交問題相交問題 積聚性法積聚性法交點(diǎn)與交線的性質(zhì)交點(diǎn)與交線的性質(zhì) 直線與平面、平面與平面不平行則必相交。直線與平面直線與平面、平面與平面不平行則必相交。直線與平面相交有相交有交點(diǎn)交點(diǎn),交點(diǎn)既在直線上又在平面上,因而交點(diǎn)是直線,交點(diǎn)既在直線上又在平面上,因而交點(diǎn)是直線與平面的共有點(diǎn)。兩平面的與平面的共有點(diǎn)。兩平面的交線交線是直線,它是兩個(gè)平面的共是直線,它是兩個(gè)平面的共有線。求線與面交點(diǎn)、面與面交線的
40、實(shí)質(zhì)是求共有點(diǎn)、共有有線。求線與面交點(diǎn)、面與面交線的實(shí)質(zhì)是求共有點(diǎn)、共有線的投影。線的投影。 PABKDBCALKEF積聚性法積聚性法 當(dāng)直線為一般位置,平面的某個(gè)投影具有積聚性時(shí),交當(dāng)直線為一般位置,平面的某個(gè)投影具有積聚性時(shí),交點(diǎn)的一個(gè)投影為直線與平面積聚性投影的交點(diǎn),另一個(gè)投影點(diǎn)的一個(gè)投影為直線與平面積聚性投影的交點(diǎn),另一個(gè)投影可在直線的另一個(gè)投影上找到??稍谥本€的另一個(gè)投影上找到。VHPHPABCacbkNKM直線可見性的判別b ba acc m mn k n 特殊位置線面相交,根據(jù)平面的積聚性投影能直接特殊位置線面相交,根據(jù)平面的積聚性投影能直接判別直線的可見性判別直線的可見性-觀察
41、法觀察法 VHPHPABCacbkNKMk在平面之前XOaa(b)bcedcefdfkk例例6 鉛垂線鉛垂線AB與一般位置平面與一般位置平面CDE相交,求交點(diǎn)并判別可相交,求交點(diǎn)并判別可見性。見性。(2 2) 兩平面相交兩平面相交f k 求兩平面交線的問題可以看作是求兩個(gè)共有點(diǎn)的問題求兩平面交線的問題可以看作是求兩個(gè)共有點(diǎn)的問題,由于由于特殊位置特殊位置平面的某些投影有積聚性平面的某些投影有積聚性,交線可直接求出。交線可直接求出。VHMmnlPBCacbPHkfFKNLnlmm l n bacc a b XOfk平面可見性的判別平面可見性的判別VHMmnlBCackfFKNLbbacnlmcm
42、alnfkfkXO平面可見性的判別VHMmnlBCackfFKNLXObbacnlmcmalnfkfk平行問題平行問題1 直線與平面平行直線與平面平行2 平面與平面平行平面與平面平行直線與平面平行直線與平面平行直線與平面平行的幾何條件: 平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與該平面平行。特殊情況:直線和投影面垂直面平行的條件!PCDBA例例1 試判斷直線試判斷直線AB是否平行于平面是否平行于平面 CDE。fgfgbaabcededc結(jié)論:直線結(jié)論:直線ABAB不平行于定平面不平行于定平面XO例例2 過點(diǎn)過點(diǎn)K作一水平線作一水平線AB平行于已知平面平行于已知平面 CDE。b a af fbc e d edk kcXO平面與平面平行平面與平面平行兩平面平行的幾何條件兩平面平行的幾何條件: :平面內(nèi)的兩相交直線對(duì)應(yīng)地平行于另平面內(nèi)的兩相交直線對(duì)應(yīng)地平行于另一平面內(nèi)的兩相交直線。一平面內(nèi)的兩相交直線。特殊情況特殊情況: :兩平面都是投影面垂直面時(shí)平行的條件兩平面都是投影面垂直面時(shí)平行的條件! !PSEFDACBf e d edfc a acb bm n mnr rss 結(jié)論:兩平面平行結(jié)論:兩平面平行XO例例3 3 試判斷兩平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋組織合同范例
- 吸塑機(jī)加工合同范例
- 廠房包工包合同范例
- 幼教產(chǎn)品經(jīng)銷合同范例
- 承包食堂合同范例
- 廢鋼供銷合同范例
- 全款購現(xiàn)房合同范例
- 會(huì)務(wù)代理協(xié)議合同范例
- 員工雇傭合同范例 餐飲
- 加盟交定金合同范例
- 美容門診感染管理制度
- 2023年電商高級(jí)經(jīng)理年度總結(jié)及下一年計(jì)劃
- 模具開發(fā)FMEA失效模式分析
- 年產(chǎn)40萬噸灰底涂布白板紙?jiān)旒堒囬g備料及涂布工段初步設(shè)計(jì)
- 1-3-二氯丙烯安全技術(shù)說明書MSDS
- 學(xué)生思想政治工作工作證明材料
- 一方出資一方出力合作協(xié)議
- 污水處理藥劑采購?fù)稑?biāo)方案(技術(shù)方案)
- 環(huán)保設(shè)施安全風(fēng)險(xiǎn)評(píng)估報(bào)告
- 數(shù)字邏輯與計(jì)算機(jī)組成 習(xí)題答案 袁春風(fēng) 第3章作業(yè)批改總結(jié)
- 要求降低物業(yè)費(fèi)的申請(qǐng)書范本
評(píng)論
0/150
提交評(píng)論