基于MKPCA的間歇過程故障檢測終_第1頁
基于MKPCA的間歇過程故障檢測終_第2頁
基于MKPCA的間歇過程故障檢測終_第3頁
基于MKPCA的間歇過程故障檢測終_第4頁
基于MKPCA的間歇過程故障檢測終_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、基于MKPCA的間歇過程故障檢測終 作者: 日期:2 個人收集整理 勿做商業(yè)用途基于多向核主元分析的啤酒發(fā)酵過程故障診斷模型摘要:針對主元分析故障診斷模型在非線性時變過程中應用的局限性,基于間歇過程的周期性特點,將核變換理論引入非線性空間的數據特征提取中,提出了一種改進的多向核主元分析故障診斷模型,有效地解決了過程數據的非線性問題,保證數據信息抽取的完整性。通過與其他方法的對比實驗,結果表明所提出的方法對緩慢時變的間歇過程具有良好的實時性和準確性。關鍵詞:間歇過程 故障檢測 多向核主元分析 1 引言間歇過程是批次生產的重復過程,廣泛應用于生物制藥、化工原料、食品等行業(yè),其具有生產過程重復性高、

2、動態(tài)特性變化快、建模困難等特點,這導致傳統(tǒng)的故障診斷方法難以得到較好的應用效果1。主元分析(principal component analysis, PCA)是多元統(tǒng)計過程監(jiān)測(multivariate statistical process monitoring, MSPM)的重要方法之一,但是PCA在過程建模時假定過程是線性的,這導致在具有強非線性生產過程的在線監(jiān)測中存在誤報率過高的現象2.近年來針對間歇過程提出的多向主元分析(MPCA)方法得到了較多的研究,然而MPCA實質上仍是一種線性化建模方法,對復雜的非線性過程在線監(jiān)控的可靠性和實時性往往也難以保證3。針對非線性過程監(jiān)測的建模問題

3、,Scholkopf等人將核函數理論引入到統(tǒng)計過程監(jiān)控中,將主元分析(PCA)方法推廣到代表非線性領域的高維特征空間,據此發(fā)展的KPCA模型可以從數據樣本中提取出非線性特征,與PCA算法相比,該方法表現出更優(yōu)的監(jiān)測性能4。本文針對間歇過程特點,將核函數理論應用于多向主元分析中,提出一種改進的多向核主元分析(MKPCA)過程故障監(jiān)測算法,并通過啤酒發(fā)酵過程的故障檢測實驗對算法性能進行了驗證。個人收集整理,勿做商業(yè)用途本文為互聯網收集,請勿用作商業(yè)用途2 核主元分析(KPCA) 核主元分析通過非線性映射將輸入集合映射到一個高維特征空間,使數據具有更好的可分性,再對高維空間的映射數據進行PCA處理,

4、得到非線性主元.KPCA不直接計算特征向量,而是將其轉化為求核矩陣的特征值和特征向量,避免了在特征空間求特征向量,而數據在特征向量上的投影轉換為求核函數的線性組合,大大簡化了計算量5。首先通過非線性映射函數:,將輸入空間,k= 1, 2, , M映射到特征空間F:,k= 1, 2, ., M中,然后在該特征空間中對式(1)的協(xié)方差矩陣進行線性主元分析。 (1)在特征空間中計算主元,可通過求解式(2)中的特征值和特征向量得到: (2)將每個樣本與式(2)作內積,可得式(3)。 (3)因為式(2)的所有解均在張成的子空間內,所以存在系數使得式(4)成立。 (4)對式(2)、(3)和(4)進行合并,

5、得式(5). (5)取作為核函數,可得到式(6). (6)式中,其特征向量所對應的特征值為 ,為了提取主元特征,將投影到上可得到式(7)。 , (7)式(7)稱為KPCA的第k個主元。3多向核主元分析故障診斷模型對于間歇過程其數據集比連續(xù)過程數據集多一維“批量”元素,每批數據都可以看作一個二維數據陣,多批數據則構成了三維數據陣,其中I為批次數目,J為變量數目,K為采樣點數。將數據按批次方向展開為,X的每一行均表示一個批次數據,如圖1示。 圖1 MKPCA建模三維數據矩陣展開后,數據處理和分析過程等同于KPCA方法6。建模步驟如下: (1) 對于數據集按批次方向展開成二維數據陣,并對其按式(8)

6、進行標準化。 (8)式中:x(j)的樣本均值,S(j)-x(j)的樣本標準差。(2) 計算核矩陣K,記其元素為,其中: (9)(3) 在特征空間中,根據式(10)和(11)對核矩陣進行標定得到。 (10) (11)其中:。(4) 對核矩陣進行特征值分解,并且使得滿足式(12)。 (12)(5) 對于每一個正常批次的數據x,根據式(7)提取其非線性主元。(6) 按式(13)和(14)構建監(jiān)控統(tǒng)計量和SPE. (13) (14)(7) 按式(15)和(16)確定統(tǒng)計量的置信限. (15)其中:n為樣本個數,m為主元個數,是檢驗水平為、自由度為m,n-1時的F分布臨界值. (16)其中:為建模所用數

7、據的協(xié)方差矩陣的特征值,是當檢驗水平為時的正態(tài)分布臨界值,M是全部主元個數,m為主元模型中的主元個數.In this:is used in modeling of the data covariance matrix eigenvalue, is when the test level is normal distribution critical values, M is the total number of principal components, m as the number of principal components in the PCA model。運用多向核主元法對間歇過

8、程進行故障檢測的步驟如下:Using multiway kernel principal component method for fault detection of batch process,its steps are as follows:當對批次進行在線監(jiān)測時,僅可知自批次開始時刻到監(jiān)測時刻的采樣數據。然而,監(jiān)測過程的測試數據應為完整的批次數據。因此,需要對自監(jiān)測時刻至批次結束時刻的數據進行估計。針對此問題已經提出了多種方法,本文采用各變量的均值來代替其估計值。When the on-line monitoring of batch, Only known, the sampling

9、 data since batch monitoring time to Monitoring time. However, test data of Monitor process shall be the complete batch data。 Therefore, need to be estimate data since monitored the moment to the end of batch moment。 The data since monitored the moment to the end of batch moment need to be estimated

10、。 To solve this problem, a variety of methods have been proposed, in this paper, using the mean of each variable to replace the estimates.(1) 在第k個采樣時刻,新的反應批次數據為,展開處理采集到的數據,得到展開后的數據矩陣,對此矩陣依據式(8)進行標準化。(1) In the first k sampling time, The new reaction batch data is, processing sampled data get the unf

11、olded data matrix , to standardize the matrix based on this type (8) .(2) 估計新批次未反應完時刻的數據,補足第一步標準化后的數據矩陣,得到,作為完整的新批次數據.(2) Estimation of the new batch did not react time data, supplying the first step of the standardized data matrix, getting as a new integrity batch data.(3) 根據式(9)計算測試數據相應的核向量。(3) Ac

12、cording to equation (9) calculation the test data corresponding kernel vector (4) 根據式(17)對核向量作標準化處理得到.(4) To standardize kernel vector according to the type (17) getting (17)其中:K和在訓練時得到,.Among them: K and obtained during training, (5) 根據式(18)提取非線性主元。(5) According to equation (18) extract nonlinear p

13、rincipal component. (18)(6) 按式(13)和(14)分別計算測試數據的和SPE統(tǒng)計量,并判斷是否超出了各自的置信限。如果出現超出其置信限的情況,則說明過程中出現了故障。(6) According to formula (13) and (14) respectively to calculate the test data of theand SPE statistics, and determine whether it beyond the respective confidence limits. If there is a condition that bey

14、ond its confidence limits, then it appeared failure in the process。4 實驗研究實驗采用微型啤酒生產裝置,測試數據來自發(fā)酵過程監(jiān)控數據。根據生產運行中各變量的活躍程度和對生產狀態(tài)的影響,選擇溫度、壓力、液位、糖度、PH值和酒精度6個過程監(jiān)測變量,這些變量反應了酵母菌菌體生長和發(fā)酵產物的合成狀況.過程周期15天,每1小時采樣1次,每批次采樣360次。實驗選取12個正常批次的數據建模。由于每一批次數據(為采樣次數)的反應時間不同,因此,在將轉換成之后,對多于2160列的直接截取到2160列,對不足2160列的批次補零,然后將矩陣排列

15、成形式,進行標準化處理,核函數采用徑向基核函數,按93%的累計貢獻率提取主成分.其中,MPCA算法的主元數目為2;而MKPCA算法的主元數目為4??梢钥闯?,MKPCA算法所選的主元數目高于MPCA算法所選的主元數目,這是由于前者從高維特征空間中提取主元,而后者從輸入空間中提取主元.4。The experimental studyThis experiment used device for miniature beer production, testing data from the fermentation process control data. According to the ac

16、tive degree of each variable in the production function and the influence on the production status, choosing the temperature, pressure, liquid level, sugar degree, PH value and alcohol degree, six process monitoring variables, these variables has been synthesized by the reaction of yeast cell growth

17、 and the fermentation products. 15 days as a process cycle, sampling 1 times every 1 hours, each batches samples 360 times. The experiment selected 12 normal batches of data modeling。 Because each batch of data (is the number of sampling) of different reaction time, Therefore, after convertingto , d

18、irecting interception of more than 2160 to 2160, to less than 2160 batches of zero padding, then the matrix is arranged in the form of , standard treatment, kernel function using rbf kernel function, According to 93 of the contribution rate to extract principal component。 Among them, principal compo

19、nent number of the MPCA algorithm is 2; The principal component number of MKPCA algorithm is 4. It is shown that principal component number selected in MKPCA algorithm is higher than that selected in MPCA algorithm。 This is due to the former from high dimensional feature space to extract the princip

20、al component, and the latter from the input space to extract the principal component.個人收集整理,勿做商業(yè)用途文檔為個人收集整理,來源于網絡 Figure 4 PCA statistics monitoring chart Figure 4 PCA SPE statistics monitoring chart Figure 4 MPCA statistics monitoring chart Figure 5 MPCA SPE statistics monitoring chart Figure 4 MKP

21、CA statistics monitoring chart Figure 4 MKPCA SPE statistics monitoring chart對啤酒發(fā)酵過程進行在線監(jiān)測,在317-360采樣時刻引入壓力傳感器故障,對測試數據分別采用PCA算法、MPCA算法和MKPCA算法進行在線監(jiān)測.PCA的和SPE監(jiān)測結果如圖2,3所示。MPCA的和SPE監(jiān)測結果如圖4,5所示。MKPCA的和SPE監(jiān)測結果如圖6,7所示。The online monitoring of the beer fermentation process, The pressure sensor fault was in

22、troduced in 317-360 sampling time, PCA algorithm, MPCA algorithm and MKPCA algorithm were used for the online monitoring of beer fermentation process. The monitoring results of statistics and SPE statistics about PCA were shown in Figure 2, 3. The monitoring results of statistics and SPE statistics

23、about MPCA were shown in Figure 4, 5. The monitoring results of statistics and SPE statistics about MKPCA were shown in Figure 6, 7.個人收集整理,勿做商業(yè)用途個人收集整理,勿做商業(yè)用途實驗結果分析:圖1中PCA的統(tǒng)計量在故障時刻不能檢測出壓力傳感器故障的存在,并且在第12和34采樣時刻還存在著故障誤報現象,圖2中PCA的SPE統(tǒng)計量在317360采樣時刻能夠及時的檢測出故障。由于統(tǒng)計量沒有檢測出過程故障而SPE統(tǒng)計量檢測出了過程故障,所以PCA算法不能實現對啤酒發(fā)

24、酵過程的監(jiān)測;從圖3、4中可以看出,當采用MPCA算法在線監(jiān)測時,圖3的統(tǒng)計量在317351采樣時刻并沒有檢測出過程故障,而在352-360采樣時刻檢測出了過程故障,所以MPCA算法的統(tǒng)計量應用在啤酒發(fā)酵過程時存在檢測滯后的現象,即不能及時檢測出故障。圖4的SPE統(tǒng)計量在317360采樣時刻能夠及時的檢測出了過程故障。同理,MPCA算法也不能及時準確的實現對啤酒發(fā)酵過程的在線監(jiān)測;從圖5、6中可以看出,通過引入核函數并結合MPCA算法復合而成的MKPCA算法的統(tǒng)計量和SPE統(tǒng)計量都能及時準確的檢測出過程故障,而且不存在誤報現象。因此采用MKPCA算法用于啤酒發(fā)酵過程的在線監(jiān)測較PCA算法和MP

25、CA算法可靠。Analysis of experimental results: The pressure sensor fault can not be detected in the fault time from the statistics of PCA in figure 1,and there are fault misreporting phenomenon in the 12 and 34 sampling time. The pressure sensor fault can be detected in the 317360 sampling time from the S

26、PE statistics of PCA in figure 2 in time. Because the pressure sensor fault cant be detected from the statistics and the pressure sensor fault can be detected from the SPE statistics。 So PCA algorithm can't be used for the online monitoring of beer fermentation process。 As can be seen from the f

27、igure 3, 4, When using MPCA algorithm online monitoring, Figure 3,the statistics in 317351 the sampling time didnt detect process faults , however, the process faults were monitored in 352-360 sampling times, therefore, the application of the statistics of MPCA algorithm for the online monitoring of

28、 beer fermentation process exist the phenomenon of hysteresis. That can't detect the fault in time. Figure 4, SPE statistics in 317-360 sampling time can detected the process fault timely。 In the same way, MPCA algorithm can't timely and accurately realize the online monitoring of the beer f

29、ermentation process; In the figure 5and 6, by introducing kernel function and combining the MPCA algorithm of composite MKPCA T statistic and SPE statistics of the algorithm can accurately and timely detect process faults, and there is no false positives。 Above all, Using MKPCA algorithm is better t

30、han PCA algorithm and MPCA algorithm文檔為個人收集整理,來源于網絡文檔為個人收集整理,來源于網絡通過實驗結果可知,引入非線性核函數能夠充分提取過程中存在的非線性信息,有效計算出高維特征空間中的主元。與PCA和MPCA算法相比,MKPCA算法表現出更好的監(jiān)測性能,更適于對非線性間歇過程進行在線監(jiān)測。Through the experimental results we can know that by introducing the nonlinear kernel function can fully extract the nonlinear inform

31、ation which existed in the process, principal component in the high dimensional feature space can be calculated effectively. Compared with PCA and MPCA algorithm, MKPCA algorithm shows better monitoring performance, more suitable for online monitoring of nonlinear batch process。5 結論本文針對間歇發(fā)酵過程緩慢時變和非線

32、性等特點,利用核理論方法對MPCA算法進行了改進,提出了適用的多向核主元分析故障診斷算法。通過引入非線性核函數,能夠充分提取過程中存在的非線性信息,有效計算出高維特征空間中的主元,并將研究結果應用于啤酒發(fā)酵過程監(jiān)測。通過與PCA算法、MPCA算法進行對比實驗表明所提出的模型可以有效處理間歇過程批次間存在的非線性屬性,獲取過程變量間的非線性關系,提高了故障診斷的及時性和準確性.5 ConclusionThis article based on the intermittent fermentation process slow time-varying, nonlinear and other

33、characteristics, using of kernel theory method improved the MPCA algorithm, it puts forward the suitable multiway kernel principal component analysis algorithm for fault diagnosis。 By introducing nonlinear kernel function, to fully extract the nonlinear information which exist in the process. Effect

34、ively calculate the principal component in the high dimensional feature space, and the research results can be applied to beer fermentation process monitoring. Through with the PCA algorithm and the MPCA algorithm comparative experiments ,it show that the existence of the nonlinear property where am

35、ong batch process batch can be effectively treated by the programs model what have been proposed, obtaining the nonlinear relationship among the process variables, Improving the timeliness and accuracy of fault diagnosis。文檔為個人收集整理,來源于網絡個人收集整理,勿做商業(yè)用途參考文獻1 C. Zhang, Y。 Li, Study on the faultdetection method in batch process based on statistical pattern analysis, Yi Qi Yi Biao Xue Bao/Chinese Journal of

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論