版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、.英文原文 Components of A Building and Tall BuildingsAndre1. AbstractMaterials and structural forms are combined to make up the various parts of a building, including the load-carrying frame, skin, floors, and partitions. The building also has mechanical and electrical systems, such as elevators, heatin
2、g and cooling systems, and lighting systems. The superstructure is that part of a building above ground, and the substructure and foundation is that part of a building below ground.The skyscraper owes its existence to two developments of the 19th century: steel skeleton construction and the passenge
3、r elevator. Steel as a construction material dates from the introduction of the Bessemer converter in 1885.Gustave Eiffel (1832-1932) introduced steel construction in France. His designs for the Galerie des Machines and the Tower for the Paris Exposition of 1889 expressed the lightness of the steel
4、framework. The Eiffel Tower, 984 feet (300 meters) high, was the tallest structure built by man and was not surpassed until 40 years later by a series of American skyscrapers.Elisha Otis installed the first elevator in a department store in New York in 1857.In 1889, Eiffel installed the first elevat
5、ors on a grand scale in the Eiffel Tower, whose hydraulic elevators could transport 2,350 passengers to the summit every hour.2. Load-Carrying FrameUntil the late 19th century, the exterior walls of a building were used as bearing walls to support the floors. This construction is essentially a post
6、and lintel type, and it is still used in frame construction for houses. Bearing-wall construction limited the height of building because of the enormous wall thickness required;for instance, the 16-story Monadnock Building built in the 1880s in Chicago had walls 5 feet (1.5 meters) thick at the lowe
7、r floors. In 1883, William Le Baron Jenney (1832-1907) supported floors on cast-iron columns to form a cage-like construction. Skeleton construction, consisting of steel beams and columns, was first used in 1889. As a consequence of skeleton construction, the enclosing walls become a “curtain wall”
8、rather than serving a supporting function. Masonry was the curtain wall material until the 1930s, when light metal and glass curtain walls were used. After the introduction of buildings continued to increase rapidly. All tall buildings were built with a skeleton of steel until World War . After the
9、war, the shortage of steel and the improved quality of concrete led to tall building being built of reinforced concrete. Marina Tower (1962) in Chicago is the tallest concrete building in the United States; its height588 feet (179 meters)is exceeded by the 650-foot (198-meter) Post Office Tower in L
10、ondon and by other towers.A change in attitude about skyscraper construction has brought a return to the use of the bearing wall. In New York City, the Columbia Broadcasting System Building, designed by Eero Saarinen in 1962,has a perimeter wall consisting of 5-foot (1.5meter) wide concrete columns
11、spaced 10 feet (3 meters) from column center to center. This perimeter wall, in effect, constitutes a bearing wall. One reason for this trend is that stiffness against the action of wind can be economically obtained by using the walls of the building as a tube; the World Trade Center building is ano
12、ther example of this tube approach. In contrast, rigid frames or vertical trusses are usually provided to give lateral stability.3. SkinThe skin of a building consists of both transparent elements (windows) and opaque elements (walls). Windows are traditionally glass, although plastics are being use
13、d, especially in schools where breakage creates a maintenance problem. The wall elements, which are used to cover the structure and are supported by it, are built of a variety of materials: brick, precast concrete, stone, opaque glass, plastics, steel, and aluminum. Wood is used mainly in house cons
14、truction; it is not generally used for commercial, industrial, or public building because of the fire hazard.4. FloorsThe construction of the floors in a building depends on the basic structural frame that is used. In steel skeleton construction, floors are either slabs of concrete resting on steel
15、beams or a deck consisting of corrugated steel with a concrete topping. In concrete construction, the floors are either slabs of concrete on concrete beams or a series of closely spaced concrete beams (ribs) in two directions topped with a thin concrete slab, giving the appearance of a waffle on its
16、 underside. The kind of floor that is used depends on the span between supporting columns or walls and the function of the space. In an apartment building, for instance, where walls and columns are spaced at 12 to 18 feet (3.7 to 5.5 meters), the most popular construction is a solid concrete slab wi
17、th no beams. The underside of the slab serves as the ceiling for the space below it. Corrugated steel decks are often used in office buildings because the corrugations, when enclosed by another sheet of metal, form ducts for telephone and electrical lines.5. Mechanical and Electrical SystemsA modern
18、 building not only contains the space for which it is intended (office, classroom, apartment) but also contains ancillary space for mechanical and electrical systems that help to provide a comfortable environment. These ancillary spaces in a skyscraper office building may constitute 25% of the total
19、 building area. The importance of heating, ventilating, electrical, and plumbing systems in an office building is shown by the fact that 40% of the construction budget is allocated to them. Because of the increased use of sealed building with windows that cannot be opened, elaborate mechanical syste
20、ms are provided for ventilation and air conditioning. Ducts and pipes carry fresh air from central fan rooms and air conditioning machinery. The ceiling, which is suspended below the upper floor construction, conceals the ductwork and contains the lighting units. Electrical wiring for power and for
21、telephone communication may also be located in this ceiling space or may be buried in the floor construction in pipes or conduits.There have been attempts to incorporate the mechanical and electrical systems into the architecture of building by frankly expressing them; for example, the American Repu
22、blic Insurance Company Building(1965) in Des Moines, Iowa, exposes both the ducts and the floor structure in an organized and elegant pattern and dispenses with the suspended ceiling. This type of approach makes it possible to reduce the cost of the building and permits innovations, such as in the s
23、pan of the structure.6. Soils and FoundationsAll building are supported on the ground, and therefore the nature of the soil becomes an extremely important consideration in the design of any building. The design of a foundation dependson many soil factors, such as type of soil, soil stratification, t
24、hickness of soil lavers and their compaction, and groundwater conditions. Soils rarely have a single composition; they generally are mixtures in layers of varying thickness. For evaluation, soils are graded according to particle size, which increases from silt to clay to sand to gravel to rock. In g
25、eneral, the larger particle soils will support heavier loads than the smaller ones. The hardest rock can support loads up to 100 tons per square foot(976.5 metric tons/sq meter), but the softest silt can support a load of only 0.25 ton per square foot(2.44 metric tons/sq meter). All soils beneath th
26、e surface are in a state of compaction; that is, they are under a pressure that is equal to the weight of the soil column above it. Many soils (except for most sands and gavels) exhibit elastic propertiesthey deform when compressed under load and rebound when the load is removed. The elasticity of s
27、oils is often time-dependent, that is, deformations of the soil occur over a length of time which may vary from minutes to years after a load is imposed. Over a period of time, a building may settle if it imposes a load on the soil greater than the natural compaction weight of the soil. Conversely,
28、a building may heave if it imposes loads on the soil smaller than the natural compaction weight. The soil may also flow under the weight of a building; that is, it tends to be squeezed out.Due to both the compaction and flow effects, buildings tend settle. Uneven settlements, exemplified by the lean
29、ing towers in Pisa and Bologna, can have damaging effectsthe building may lean, walls and partitions may crack, windows and doors may become inoperative, and, in the extreme, a building may collapse. Uniform settlements are not so serious, although extreme conditions, such as those in Mexico City, c
30、an have serious consequences. Over the past 100 years, a change in the groundwater level there has caused some buildings to settle more than 10 feet (3 meters). Because such movements can occur during and after construction, careful analysis of the behavior of soils under a building is vital.The gre
31、at variability of soils has led to a variety of solutions to the foundation problem. Wherefirm soil exists close to the surface, the simplest solution is to rest columns on a small slab of concrete(spread footing). Where the soil is softer, it is necessary to spread the column load over a greater ar
32、ea;in this case, a continuous slab of concrete(raft or mat) under the whole building is used. In cases where the soil near the surface is unable to support the weight of the building, piles of wood, steel, or concrete are driven down to firm soil.The construction of a building proceeds naturally fro
33、m the foundation up to the superstructure. The design process, however, proceeds from the roof down to the foundation (in the direction of gravity). In the past, the foundation was not subject to systematic investigation. A scientific approach to the design of foundations has been developed in the 2
34、0th century. Karl Terzaghi of the United States pioneered studies that made it possible to make accurate predictions of the behavior of foundations, using the science of soil mechanics coupled with exploration and testing procedures. Foundation failures of the past, such as the classical example of
35、the leaning tower in Pisa, have become almost nonexistent. Foundations still are a hidden but costly part of many buildings. The early development of high-rise buildings began with structural steel framing. Reinforced concrete and stressed-skin tube systems have since been economically and competiti
36、vely used in a number of structures for both residential and commercial purposes. The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structural systems.Greater height entails increased column and
37、 beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit. Excessive lateral sway may causeserious recurring damage to partitions, ceilings, and other architectural details. In addition, excessive sway may cause discomfort to the occupants of the
38、building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of the inherent potential stiffness of the total building and therefore do not require additional stiffening to limit the sway.中文譯文建筑及高層建筑的組成安得烈1 摘要材料和結(jié)構(gòu)類型是構(gòu)成建筑物各方面的組
39、成部分,這些部分包括承重結(jié)構(gòu)、圍護(hù)結(jié)構(gòu)、樓地面和隔墻。建筑物內(nèi)部還有機(jī)械和電氣系統(tǒng),例如電梯、供暖和制冷系統(tǒng)、照明系統(tǒng)等。建筑中高于地面的部分稱為上部結(jié)構(gòu),而地面以下的部分稱為地下結(jié)構(gòu)和基礎(chǔ)。摩天大樓的出現(xiàn)應(yīng)歸功于19世紀(jì)的兩個(gè)新發(fā)明:鋼結(jié)構(gòu)建筑和載人電梯。鋼材作為結(jié)構(gòu)材料的應(yīng)用起源于1855年貝色麥煉鋼法。古斯塔艾菲爾(18321923)在首次介紹鋼結(jié)構(gòu)建筑是在法國(guó)。他在1889年的巴黎國(guó)際博覽會(huì)所設(shè)計(jì)的艾菲爾鐵塔,完美的展現(xiàn)了鋼結(jié)構(gòu)的輕巧。艾菲爾鐵塔高300米,是當(dāng)時(shí)人類建造的最高建筑物,而且直到40年后才被美國(guó)的摩天大樓超越。第一部電梯是1857年Elisha Otis給紐約的一家百貨公
40、司所安裝的。1889年,艾菲爾在艾菲爾鐵塔上安裝了第一部大型液壓電梯,它每小時(shí)可以運(yùn)送2350位乘客到達(dá)塔頂。2 承重框架直到19世紀(jì)后期,建筑物的外墻還仍被用做承重墻來支撐樓層,這種結(jié)構(gòu)是基本的一種過梁類型,而且它也被用在框架結(jié)構(gòu)房屋中。因?yàn)樗鑹w的厚度很大,承重墻結(jié)構(gòu)限制了建筑物的高度;例如,1880年建于芝加哥的16層高的Monadnock Building,在較低的樓層墻體厚度已達(dá)到1.5米。1883年,Willian Le Baron Jenney(18321907)用類似鳥籠形狀的鐵柱來支撐樓層。1889年,框架結(jié)構(gòu)首次由鋼梁和鋼柱構(gòu)成。外墻成為了而不只是被用做支撐結(jié)構(gòu)是框架結(jié)構(gòu)
41、的一個(gè)成果。自從鋼骨架首次推出,建筑物的高度也一直在迅速增加。第二次世界大戰(zhàn)前,所有的高層建筑都是由鋼骨架建造的。戰(zhàn)爭(zhēng)結(jié)束后,鋼材的缺乏和混凝土質(zhì)量的改進(jìn),促進(jìn)了鋼筋混凝土高層建筑的發(fā)展。芝加哥的Marina Towers(1962)是當(dāng)時(shí)美國(guó)最高的混凝土建筑;它的高度是588英尺即179米,但是很快它就被高650英尺即195米的倫敦郵政塔和其它一些塔所超過。人們關(guān)于摩天大樓態(tài)度的轉(zhuǎn)變使承重墻重新得到了應(yīng)用。在紐約,由Eero Saarinen于1962年設(shè)計(jì)的哥倫比亞廣播公司大樓,四周的墻由1.5米寬的混凝土柱構(gòu)成,柱與柱的中心間距為3米。這種圍護(hù)墻有效地構(gòu)成了建筑物的承重墻。這種趨勢(shì)發(fā)展的
42、原因之一是建筑物的墻像一個(gè)管道一樣可以有利地抵抗風(fēng)的強(qiáng)烈作用;世貿(mào)大樓就是另一個(gè)應(yīng)用管道法的例子。相比之下,堅(jiān)固的框架或垂直支撐則通常會(huì)使建筑的橫向更穩(wěn)定。3 圍護(hù)結(jié)構(gòu)一個(gè)建筑的圍護(hù)結(jié)構(gòu)由透明的窗戶和不透明的墻組成。窗戶通常采用傳統(tǒng)上的玻璃作為材料,然而塑料也被使用,特別在破損嚴(yán)重和難以保持的學(xué)校里。墻被用來覆蓋結(jié)構(gòu)和起支撐作用,它是由多樣化的建筑材料組成:磚、現(xiàn)澆混凝土、石頭、不透明玻璃、塑料、鋼材和鋁材。木頭是過去建造房屋的主要材料;但因?yàn)橐兹?,一般不常用于用于商業(yè)、工業(yè)和公共建筑。4 樓地面一幢建筑的樓地面結(jié)構(gòu)取決于它所使用的基本結(jié)構(gòu)框架。在鋼框架建筑中,樓地面或者是鋼梁上的混凝土樓板,
43、或者是由波紋鋼配有混凝土骨料組成的地板。在混凝土結(jié)構(gòu)中,樓地面或者是混凝土梁上的混凝土樓板或者是一系列緊密分布于混凝土梁在方向上端的薄混凝土樓板,在它的下面抹一層抹面。這種樓地面的應(yīng)用取決于支撐柱之間的距離或者墻和空間的功能性。在一棟公寓大樓中,例如,當(dāng)墻和柱隔開3.7米到5.5米時(shí),最常見的結(jié)構(gòu)是無梁實(shí)心混凝土樓蓋。樓蓋的下表面是樓蓋以下空間的最高限度。而波紋鋼地板則常用于辦公大樓中,這是因?yàn)楫?dāng)波紋鋼地板的波紋被另一塊金屬板蓋上時(shí),可以形成電話線和電線管道。5 機(jī)械與電力系統(tǒng)一個(gè)現(xiàn)代建筑不僅要有必要使用空間而且也要包括機(jī)械、電力系統(tǒng)等輔助空間,以便提供一個(gè)舒適的生活環(huán)境。這些輔助空間可能占摩天大樓總建筑面積的25%。在一個(gè)辦公大樓中,供暖、通風(fēng)、電力和衛(wèi)生設(shè)備系統(tǒng)的預(yù)算額占實(shí)際建筑總預(yù)算額的40%,這足以顯示它們?cè)诮ㄖ械闹匾浴R驗(yàn)楝F(xiàn)在許多建筑被建造成密封的,窗戶不能被打開,因此便要由機(jī)械系統(tǒng)提供通風(fēng)設(shè)備和空氣調(diào)節(jié)設(shè)備。管道將新鮮空氣從通過中央換氣室和空氣調(diào)節(jié)器源源不斷的輸入建筑物內(nèi)。懸掛在上面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電力供應(yīng)會(huì)計(jì)崗位聘用協(xié)議
- 培訓(xùn)中心停車場(chǎng)運(yùn)營(yíng)辦法
- 地鐵車輛段建設(shè)機(jī)械臺(tái)班施工合同
- 甜品店門頭租賃協(xié)議
- 農(nóng)村林地租賃合同:林業(yè)碳匯項(xiàng)目
- 藝術(shù)團(tuán)體管理助理招聘協(xié)議
- 設(shè)計(jì)單位流程優(yōu)化方案
- 咖啡館炊事員工作守則
- 建筑工程備案審批合同ktv
- 機(jī)場(chǎng)航站樓廣告牌安裝施工合同
- 部編版道德與法治五年級(jí)上冊(cè)中華民族一家親第一課時(shí)課件
- 女子沙灘排球跳發(fā)球空中擊球技術(shù)的分析
- 氣浮機(jī)使用說明書
- 《公務(wù)員回避制度》課件
- 品質(zhì)管理與質(zhì)量控制提升產(chǎn)品品質(zhì)
- 四川省涼山州西昌市2023-2024學(xué)年四年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 康復(fù)護(hù)理的歷史發(fā)展
- 煙花爆竹從業(yè)人員安全培訓(xùn)試題
- 電梯使用現(xiàn)場(chǎng)類隱患專項(xiàng)排查清單
- Part1-2 Unit3 Internship教案-【中職專用】高一英語精研課堂(高教版2021·基礎(chǔ)模塊2)
- 一例下肢靜脈潰瘍患者的個(gè)案護(hù)理論文
評(píng)論
0/150
提交評(píng)論