整除資料匯總_第1頁(yè)
整除資料匯總_第2頁(yè)
整除資料匯總_第3頁(yè)
整除資料匯總_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、11能被 2、3、4、5、6、7、8 9 等數(shù)整除的數(shù)的特征性質(zhì) 1:如果數(shù) a、b 都能被 c 整除,那么它們的和(a+b)或差( a b)也能被c 整除。性質(zhì) 2: 幾個(gè)數(shù)相乘,如果其中有一個(gè)因數(shù)能被某一個(gè)數(shù)整除,那么它們的積也能被這個(gè)數(shù)整除。能被 2 整除的數(shù)個(gè)位上的數(shù)能被2 整除(偶數(shù)都能被2 整除),那么這個(gè)數(shù)能被 2整除 能被 3 整除的數(shù)各個(gè)數(shù)位上的數(shù)字和能被3 整除,那么這個(gè)數(shù)能被3 整除能被 4 整除的數(shù)個(gè)位和十位所組成的兩位數(shù)能被4 整除,那么這個(gè)數(shù)能被4 整除能被 5 整除的數(shù)個(gè)位上的數(shù)都能被5 整除(即個(gè)位為0 或 5)那么這個(gè)數(shù)能被5 整除能被 6 整除的數(shù)如果一個(gè)數(shù)

2、既能被2 整除又能被 3 整除,那么這個(gè)數(shù)能被6 整除能被 7 整除的數(shù)若一個(gè)整數(shù)的個(gè)位數(shù)字截去,再?gòu)挠嘞碌臄?shù)中,減去個(gè)位數(shù)的 2倍,如果差是7 的倍數(shù)則原數(shù)能被 7 整除。如果差太大或心算不易看出是否 7 的倍數(shù)就需要繼續(xù)上述截尾、倍大、相減、驗(yàn)差的過(guò)程,直到能清楚判斷為止。例如,判斷 133 是否 7 的倍數(shù)的過(guò)程如下:13 3x 2=乙所 以 133 是 7 的倍數(shù);又例如判斷 6139 是否 7 的倍數(shù)的過(guò)程如下: 613 9x 2 = 595, 59 5x 2= 49,所以 6139 是 7 的倍數(shù)余類推。能被 8 整除的數(shù)百位、十位和個(gè)位所組成的三位數(shù)能被8 整除,那么這個(gè)數(shù)能被8

3、 整除 能被 9 整除的數(shù)各個(gè)數(shù)位上的數(shù)字和能被9 整除,那么這個(gè)數(shù)能被9 整除能被 10 整除的數(shù)如果一個(gè)數(shù)既能被2 整除又能被 5 整除,那么這個(gè)數(shù)能被10 整除(即個(gè)位數(shù)為零)能被 11 整除的數(shù)“奇偶位差法”奇數(shù)位(從左往右數(shù))上的數(shù)字和與偶數(shù)位上的數(shù)字和之差(大數(shù)減小數(shù))能被11 整除,則該數(shù)就能被11 整除。 11 的倍 數(shù)檢驗(yàn)法也可用上述檢查7 的割尾法處理!過(guò)程唯一不同的是:倍數(shù)不是2 而是 1 ! 能被 12 整除的數(shù)若一個(gè)整數(shù)能被3 和 4 整除,則這個(gè)數(shù)能被12 整除 能被 13 整除的數(shù) 若一個(gè)整數(shù)的個(gè)位數(shù)字截去,再?gòu)挠嘞碌臄?shù)中,加上個(gè)位數(shù)的 4 倍,如果差是 13 的

4、倍數(shù)則原數(shù)能被 13 整除。如果差太大或心算不易看出是否 13 的倍數(shù)就需要繼續(xù)上述截尾、倍大、相加、驗(yàn)差的過(guò)程,直到能清楚判斷為止。能被 17 整除的數(shù)若一個(gè)整數(shù)的個(gè)位數(shù)字截去,再?gòu)挠嘞碌臄?shù)中,減去個(gè)位數(shù)的 5倍,如果差是17 的倍數(shù)則原數(shù)能被 17 整除。如果差太大或心算不易看出是否 17的倍數(shù)就需要繼續(xù)上述截尾、倍大、相減、驗(yàn)差的過(guò)程,直到能清楚判斷為止。另一種方法:若一個(gè)整數(shù)的末三位與3 倍的前面的隔出數(shù)的差能被17 整除,則這個(gè)數(shù)能被 17 整除12能被 19 整除的數(shù)若一個(gè)整數(shù)的個(gè)位數(shù)字截去,再?gòu)挠嘞碌臄?shù)中,加上個(gè)位數(shù)的 2倍,如果差是19 的倍數(shù)則原數(shù)能被 19 整除。如果差太大

5、或心算不易看出是否 19的倍數(shù)就需要繼續(xù)上述截尾、倍大、相加、驗(yàn)差的過(guò)程,直到能清楚判斷為止。另一種方法:若一個(gè)整數(shù)的末三位與7 倍的前面的隔出數(shù)的差能被19 整除,則這個(gè)數(shù)能被 19 整除能被 23 整除的數(shù)若一個(gè)整數(shù)的末四位與前面5 倍的隔出數(shù)的差能被23(或 29)整除,則這個(gè)數(shù)能被23 整除能被 25 整除的數(shù)十位和個(gè)位所組成的兩位數(shù)能被25 整除。能被 125 整除的數(shù)百位、十位和個(gè)位所組成的三位數(shù)能被125 整除。? ? 1、整數(shù) a 除以整數(shù) b(b 工 0),所得的商正好是整數(shù)而沒(méi)有余數(shù)我們就說(shuō) a 能被 b 整除(也可以說(shuō) b 能整除 a)。2、 如果整數(shù) a 能被整數(shù) b(

6、b 工 0)整除,則稱a 是 b 的倍數(shù) b 是 a 的約數(shù)。3、 整除的數(shù)其數(shù)字和一定是9 的倍數(shù) . 4、 能被 11 整除的數(shù)的特征是這個(gè)數(shù)的奇數(shù)位數(shù)字之和與偶數(shù)位數(shù)字之和的差能被 11 整除。5、 一個(gè)三位以上的整數(shù)能否被7 (11 或 13)整除,只須看這個(gè)數(shù)的末三位數(shù)字表示的三位數(shù)與末三位以前的數(shù)字組成的數(shù)的差(以大減?。┠芊癖?(11 或 13)整除。例題精講1、 判斷 47382 能否被 3 或 9 整除?分析:能被3 或 9 整除的數(shù)的特點(diǎn)是這個(gè)數(shù)各數(shù)位上的數(shù)字和是3 或 9 的倍數(shù)。47382 各個(gè)數(shù)位的數(shù)字相加和是24, 24 是 3 的倍數(shù)但不是9 的倍數(shù)。解 : 47

7、382 能被 3 整除,不能被9 整除2、 判斷 42559 , 7295871 能否被 11 整除?分析:一個(gè)三位以上的整數(shù)能否被11 整除,只須看這個(gè)數(shù)的奇數(shù)位數(shù)字之和與偶數(shù)位數(shù)字之和的差能否被11 整除。解: 42559 奇數(shù)位的數(shù)字和為4+5+9=18, 偶數(shù)位的數(shù)字和為2+5=7 , 18-7=11 是 11 的倍數(shù)所以 42559 能被 11 整除; 7295871 奇數(shù)位的數(shù)字和為7+9+8+1=25 偶數(shù)位的數(shù)字和為2+5+7=14, 25-14=11是 11 的倍數(shù)所以 7295871 也能被 11 整除。3、32335 能否被 7 整除?分析:一個(gè)三位以上的整數(shù)能否被7 (

8、11 或 13)整除,只須看這個(gè)數(shù)的末三位數(shù)字表示的三位數(shù)與末三位以前的數(shù)字組成的數(shù)的差(以大減?。┠芊癖?( 11 或 13)整除。解: 335-32=303 ,303 不能被 7 整除,所以 32335 不能被 7 整除。數(shù)的整除具有如下性質(zhì):13性質(zhì) 1 如果甲數(shù)能被乙數(shù)整除,乙數(shù)能被丙數(shù)整除,那么甲數(shù)一定能被丙數(shù)整除。例如, 48 能被 16 整除, 16 能被 8 整除,那么 48 一定能被 8 整除。性質(zhì) 2 如果兩個(gè)數(shù)都能被一個(gè)自然數(shù)整除,那么這兩個(gè)數(shù)的和與差也一定能被這個(gè)自然數(shù)整除。例如,21 與 15 都能被 3 整除,那么 21 + 15 及 21-15 都能被3 整除。性

9、質(zhì) 3 如果一個(gè)數(shù)能分別被兩個(gè)互質(zhì)的自然數(shù)整除,那么這個(gè)數(shù)一定能被這兩個(gè)互質(zhì)的自然數(shù)的乘積整除。例如,126 能被 9 整除,又能被7 整除,且 9 與 7 互質(zhì),那么 126 能被 9x 7= 63 整除??偨Y(jié):我們要牢記能被n 個(gè)特殊數(shù)整除的特征,歸納出一般性的規(guī)律。(1) 一個(gè)數(shù)的個(gè)位數(shù)字如果是0, 2, 4, 6, 8 中的一個(gè),那么這個(gè)數(shù)就能被2 整除。(2)一個(gè)數(shù)的個(gè)位數(shù)字如果是0 或 5, 那么這個(gè)數(shù)就能被5 整除。(3)個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字之和如果能被3 整除,那么這個(gè)數(shù)就能被3 整除。(4)一個(gè)數(shù)的末兩位數(shù)如果能被4 (或 25)整除,那么這個(gè)數(shù)就能被4 (或25) 整除。(

10、5) 一個(gè)數(shù)的末三位數(shù)如果能被8 (或 125)整除,那么這個(gè)數(shù)就能被8 (或125)整除。(6)個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字之和如果能被9 整除,那么這個(gè)數(shù)就能被9 整除。?割尾法有些數(shù)具有一種特殊的整除性。如:能被11 整除的數(shù)去尾一倍(或加尾十倍,因?yàn)?11-仁 10)所得數(shù)能被11 整除。如 121, 12-仁 11 , 11 能被 11 整除,所以121 能。這種方法對(duì)于11 很好證明,但對(duì)其他的卻不一定了。(某數(shù)去尾一倍,實(shí)際是去了11 的倍數(shù),所剩的數(shù)去掉后面的零(因?yàn)?10 的無(wú)論多少次方都不能被 11 整除) .所以剩余數(shù)若能被11 整除,就足以說(shuō)明原數(shù)能被11 整除.用奇偶數(shù)位和差

11、來(lái)說(shuō)明也是相似的道理)再如 13 是加尾四倍(或減尾9 倍), 17 是減尾五倍(或加尾12 倍), 19 是加尾 2 倍(或減尾十七倍)有一個(gè)道理是很明顯的。如果有一個(gè)整數(shù)的末位數(shù)是1, 這個(gè)數(shù)又比 21 大 的話,我們將這個(gè)數(shù)減去21,得數(shù)(它的末位數(shù)肯定是0)如果能被 7 整除,先前那個(gè)數(shù)肯定也能被7 整除;如果得數(shù)不能被7 整除,先前那個(gè)數(shù)肯定也不能被 7 整除,即在這種情況下,判斷得數(shù)能不能被7 整除,最末位上的0 可以舍去不管。如果給定的整數(shù)的末位數(shù)不是1, 而是其他數(shù),也可以依此類推,例如給定整數(shù)末位數(shù)是6, 我們可將此數(shù)減去21 x6=126 , 也即先從該整數(shù)中去掉末14位數(shù)

12、 6, 再?gòu)乃鄶?shù)中減去6x 2=12 。由此我們得到一個(gè)一般原則:去掉末位數(shù),再?gòu)氖O碌臄?shù)中減去去掉的末位數(shù)的2 倍。以考查 15946 能不能被7 整除為例,去掉末位數(shù)6, 再計(jì)算 1594-2 x6 得 1582, 此時(shí),如果 1582 能被 7 整除,則 115946 就能被 7 整除;如果 1582 不能被 7 整除,則 15946 就不能被 7 整除。繼續(xù)對(duì) 1582 用此法判斷可得154, 再作一次就得乙 由于最后得到的是 7 (或7 的倍數(shù)),故知15946 能被 7 整除。這是一種簡(jiǎn)捷可靠的判斷一個(gè)整數(shù)能不能被7 整除的方法,我們稱它為“去一減二法”,它的意思就是前面說(shuō)的:去

13、掉末位一個(gè)數(shù),再?gòu)氖O碌臄?shù)中減去去掉的數(shù)的2 倍。還有一種判斷整數(shù)能不能被7 整除的方法,這種方法也可以用來(lái)判斷整數(shù)是否能被11 或 13 整除,由于這種方法的基礎(chǔ)是7x 11x 13=1001 , 所以我們將它為“ 1001 法”。還以15946 為例,我們將15946 從左往右數(shù)到第一位與第四位(中間相隔兩位)上的數(shù)都減去 1, 則得 5936, 實(shí)際上相當(dāng)于減去10x 1001 , 減去的是 7 的倍數(shù),因此要考查 15946 是否能被 7 整除,只須考查5936 是否能被 7 整除就行了,再?gòu)?5936 的第一位和第四位上都減去5, 得 931,則 15946 能不能被 7 整除的問(wèn)題

14、變成了考查931 能不能被 7 整除,如果我們把大于7 的數(shù)字都減去乙實(shí)際上就是要考查231 是否能被 7 整除,這時(shí)只須用一次“去一減二法”得21, 就能判定 15946 能被 7 整除了。又如,用“ 1001 法”考查 841945 能不能被 7 整除,由于1001 x 841=841841, 所以 841945-841841=945-841 = 104 (即多次用“ 1001 法的結(jié)果),因此我們只須考查104 是否能被 7 整除即可,此時(shí)用“去一減二法”得 2, 故知 841945 不能被 7 整除。這里要注意,因?yàn)?001=7x11 x 13, 所以“ 1001 法”不光能用來(lái)判斷7 的整除性,還可以用來(lái)判斷11 和 13 的整除性,由于 104 不能被 11 整除而能被

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論