《高中競(jìng)賽教程》教案:第20講 共點(diǎn)共線共圓問(wèn)題(教師)_第1頁(yè)
《高中競(jìng)賽教程》教案:第20講 共點(diǎn)共線共圓問(wèn)題(教師)_第2頁(yè)
《高中競(jìng)賽教程》教案:第20講 共點(diǎn)共線共圓問(wèn)題(教師)_第3頁(yè)
《高中競(jìng)賽教程》教案:第20講 共點(diǎn)共線共圓問(wèn)題(教師)_第4頁(yè)
《高中競(jìng)賽教程》教案:第20講 共點(diǎn)共線共圓問(wèn)題(教師)_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第20講 共點(diǎn)、共線與共圓問(wèn)題本節(jié)主要內(nèi)容有共點(diǎn)、共線與共圓概念及常用證明方法所謂共點(diǎn),指n條(n3)直線經(jīng)過(guò)同一點(diǎn)或n個(gè)(n3)圓經(jīng)過(guò)同一點(diǎn); 共線,指的三個(gè)及以上的點(diǎn)在同一條直線上; 共圓,指不在一條直線上的三點(diǎn)確定一個(gè)圓,以及有四點(diǎn)或四個(gè)以上的點(diǎn)在同一個(gè)圓上證明中常用到Menelaus定理、Ceva定理、Fermat點(diǎn)、Simson線、Euler線、四點(diǎn)共圓等知識(shí)A類(lèi)例題KHGEFBCDA例1 設(shè)線段AB的中點(diǎn)為C,以AC為對(duì)角線作平行四邊形AECD、BFCG,又作平行四邊形CFHD、CGKE,求證:H、C、K三點(diǎn)共線分析 C為AB中點(diǎn),若C為HK的中點(diǎn),則AKBH為平行四邊形反之,若平

2、行四邊形成立,則H、C、K共線證明 連AK、DG、BH ADECKG,ADECKG, 四邊形AKGD是平行四邊形 AKGD,AKGD同理,BHGD,BHGD, BHAK,BHAK, 四邊形AKBH是平行四邊形故AB、HK互相平分,即HK經(jīng)過(guò)AB的中點(diǎn)C H、C、K三點(diǎn)共線說(shuō)明 證明具有特殊的性質(zhì)的幾個(gè)點(diǎn)共線 鏈接 點(diǎn)共線的通常證明方法是:通過(guò)鄰補(bǔ)角關(guān)系證明三點(diǎn)共線;證明兩點(diǎn)的連線必過(guò)第三點(diǎn);證明三點(diǎn)組成的三角形面積為零;還可以利用Menelaues定理及其逆定理證明三點(diǎn)共線等n(n4)點(diǎn)共線可轉(zhuǎn)化為三點(diǎn)共線例2 求證:過(guò)圓內(nèi)接四邊形各邊中點(diǎn)向?qū)吽鞯乃臈l垂線,交于一點(diǎn)分析 畫(huà)出圖形,是必要的

3、,可以研究一下兩條垂線的交點(diǎn)的性質(zhì),不難發(fā)現(xiàn)證明的方法證明 若ABCD是特殊圖形(矩形、等腰梯形),易知結(jié)論成立如圖,設(shè)圓內(nèi)接四邊形ABCD的對(duì)邊互不平行E、F、G、H分別為AB、BC、CD、DA的中點(diǎn),EE'CD,F(xiàn)F'DA,GG'AB,HH'BC,垂足分別為E',F(xiàn)',G',H'設(shè)EE'與GG'交于點(diǎn)P E為AB中點(diǎn), OEAB,OEEE'同理,OGEE' OEPG為平行四邊形 OP、EG互相平分即OP經(jīng)過(guò)EG中點(diǎn)M同理,設(shè)FF'與HH'交于Q,則OQ經(jīng)過(guò)FH中點(diǎn)N E、F、G、

4、H分別為AB、BC、CD、DA的中點(diǎn), EFGH是平行四邊形,EG、FH互相平分,即EG的中點(diǎn)就是FH的中點(diǎn)于是M與N重合 OP、OQ都經(jīng)過(guò)點(diǎn)M且OPOQ2OM P、Q重合,即四條垂線交于一點(diǎn)說(shuō)明 本題利用了兩條直線的交點(diǎn)具有某種性質(zhì)來(lái)證明三線共點(diǎn) 鏈接 證明線共點(diǎn)還可用有關(guān)定理(如三角形的3條高線交于一點(diǎn)、Ceva定理及逆定理等),或證明第3條直線通過(guò)另外兩條直線的交點(diǎn),也可轉(zhuǎn)化成點(diǎn)共線的問(wèn)題給予證明例3 O1與O2相交于點(diǎn)A、B,P為BA延長(zhǎng)線上一點(diǎn),割線PCD交O1于C、D,割線PEF交O2于E、F,求證:C、D、E、F四點(diǎn)共圓分析 可以通過(guò)C、D、E、F連成的四邊形的對(duì)角互補(bǔ)或四邊形的

5、外角等于內(nèi)對(duì)角來(lái)證明證明 鏈接CE、D F,PC·PD=PA·PB=PE·PF于是,PCEPFD, PEC=PDF C、D、E、F共圓鏈接 證明共圓常用的方法有:證明幾個(gè)點(diǎn)與某個(gè)定點(diǎn)距離相等;如果某兩點(diǎn)在某條線段的同旁,證明這兩點(diǎn)對(duì)這條線段的張角相等;證明凸四邊形對(duì)角互補(bǔ)(或外角等于內(nèi)對(duì)角)(特別的,如果幾個(gè)點(diǎn)對(duì)同一條線段張角為直角,則這幾個(gè)點(diǎn)在以這條線段為直徑的圓上)證明這四點(diǎn)可以滿足圓冪定理情景再現(xiàn)1I內(nèi)切于ABC,D為BC上的切點(diǎn),M、N分別為AD、BC的中點(diǎn),求證:M、I、N三點(diǎn)共線2. 證明三角形的三條高所在直線交于一點(diǎn);三條中線交于一點(diǎn);三條角平分線交

6、于一點(diǎn)3. 設(shè)PQ、QR是O的內(nèi)接正九邊形的相鄰兩邊A為PQ中點(diǎn),B為垂直于QR的半徑的中點(diǎn)求BAOB類(lèi)例題例4 設(shè)等腰三角形ABC的兩腰AB、AC分別與O切于點(diǎn)D、E,從點(diǎn)B作此圓的切線,其切點(diǎn)為F,設(shè)BC中點(diǎn)為M,求證:E、F、M三點(diǎn)共線分析 顯然此圓和三角形的位置需要分情況討論,要證明E、F、M三點(diǎn)共線,可以證明連線成角為0°或180°,于是有下面的證明證明 ABC是等腰三角形,ABAC, 直線AO是BAC的平分線故AO所在直線通過(guò)點(diǎn)M OMB90°,又ODB90°,D、O、M、B四點(diǎn)共圓 DFMDOM且ABMDOM180° DFEDOE

7、ABM DFEDFM180° E、F、M共線如果切點(diǎn)F在三角形外,則由D、B、F、M、O共圓,得DFMDBM而DBMAODDOEDFE DFMDFE F、M、E共線說(shuō)明 證明三點(diǎn)共線常證明連線成角為0°或180°例5 以銳角ABC的BC邊上的高AH為直徑作圓,分別交AB、AC于M、N,過(guò)A作直線lAMN,用同樣的方法作出直線lB,lC,求證:lA、lB、lC交于一點(diǎn)分析 如果能證明這三條直線都經(jīng)過(guò)三角形的外心,則此三線共點(diǎn)證明 取ABC的外接圓O,連HN,DB則CAD與MNH都是ANM的余角, MNHCAD, MNHMAH,CADCBD, CBDMAH, BAHA

8、BH90°, CBDCBA90° lA是O的直徑即AB過(guò)O的圓心O同理lB、lC都過(guò)點(diǎn)O即lA、lB、lC交于一點(diǎn)鏈接 利用某些特殊點(diǎn)證明三線共點(diǎn)是常用的方法,三角形的五心是經(jīng)常用到的對(duì)于三角形的五心的性質(zhì),同學(xué)們可以參見(jiàn)第十七講的內(nèi)容例6 在ABC的邊AB、BC、CA上分別取點(diǎn)D、E、F,使DE=BE,EF=ECCBADFEO12證明:ADF的外接圓圓心在DEF的平分線上分析 設(shè)O為ADF的外接圓圓心,于是OA=OD=OF若EO是DEF的平分線,則出現(xiàn)了等線段對(duì)等角的情況,這在圓中有此性質(zhì)故應(yīng)證明O、D、E、F共圓證明 EC=EF, 2=180°2C,同理,1=

9、180°2B, DEF=180°12=2(B+C)180°=2(180°A)180°=180°2A但O為ADF的外接圓圓心,DOF=2A,DEF+DOF=180°, O、D、E、F四點(diǎn)共圓但OD=OF,DEO=OEF,即O在DEF的角平分線上情景再現(xiàn)4. 菱形ABCD中,A=120°,O為ABC外接圓,M為其上一點(diǎn),連接MC交AB于E,AM交CB延長(zhǎng)線于F求證:D,E,F(xiàn)三點(diǎn)共線5設(shè)P、Q、R分別為ABC的外接圓O上弧BC、CA、AB的中點(diǎn)OEDRQPCBAPR、PQ分別交AB、AC于點(diǎn)D、E,求證:DEBCOAF

10、DCBEM6以ABC的兩邊AB、AC為邊向外作正方形ABDE、ACFG,ABC的高為AH,求證:AH、BF、CD三線交于一點(diǎn)FDHGECBAGEFDABCE'F'G'M7. 如圖,兩個(gè)正三角形EFG與E'F'G'都內(nèi)接于正方形ABCD,求證:EE'GG'是平行四邊形C類(lèi)例題例7 設(shè)AD、BE、CF為ABC的三條高,從點(diǎn)D引AB、BE、CF、AC的垂線DP、DQ、DR、DS,垂足分別為P、Q、R、S,求證:P、Q、R、S四點(diǎn)共線分析 這里有多個(gè)四點(diǎn)共圓,又有多個(gè)垂線四點(diǎn)共圓,可以看成圓的內(nèi)接三角形與圓上一點(diǎn)故適用于Simson線證明

11、 設(shè)H為垂心由HDBHFB90°, H、D、B、F四點(diǎn)共圓 DPBF,DQBH,DRHF,P、Q、R分別為垂足 P、Q、R共線,(HBF的Simson線)同理,Q、R、S共線(CEH的Simson線) P、Q、R、S共線說(shuō)明 利用幾何名定理(Simson 線等)證明三點(diǎn)共線是常用方法鏈接 (Simson 線)設(shè)P是ABC的外接圓上(異于A、B、C)一點(diǎn),PXBC,PYCA,PZAB,垂足分別為X、Y、Z,則X、Y、Z共線例8 設(shè)A1、B1、C1是直線l1上三點(diǎn),A2、B2、C2是直線l2上三點(diǎn)A1B2與A2B1交于L,A1C2與A2C1交于M,B1C2與B2C1交于N,求證:L、M、

12、N三點(diǎn)共線分析 圖中有許多三點(diǎn)共線,可以利用這些三點(diǎn)共線來(lái)證明L、M、N三點(diǎn)共線所以可以選定一個(gè)三角形,這個(gè)三角形的三邊上分別有L、M、N三點(diǎn)設(shè)A1C2與A2B1、B2C1交于P、Q,A2B1與B2C1交于R則只要證明··=1,則由Menelaues定理的逆定理可證明L、M、N三點(diǎn)共線證明 A2C1截PQR得,··=1,B1C2截PQR得,··=1,A1B2截PQR得,··=1,l1截PQR得,··=1,l2截PQR得,··=1五式相乘,即得··=1,從而

13、L、M、N三點(diǎn)共線說(shuō)明 本題利用了Menelaues定理及其逆定理證明三點(diǎn)共線鏈接 證明三點(diǎn)共線和三線共點(diǎn)常用以下兩個(gè)定理:(Menelaues定理) X、Y、Z是ABC的三邊BC、CA、AB所在直線上的三點(diǎn),則X、Y、Z三點(diǎn)共線的充要條件是··=1(Ceva定理)X、Y、Z是ABC的三邊BC、CA、AB上三點(diǎn),則AX、BY、CZ三線共點(diǎn)的充要條件是··=1同學(xué)們可參見(jiàn)本書(shū)第十八、十九講的內(nèi)容例9 四邊形內(nèi)接于O,對(duì)角線AC、BD交于點(diǎn)P,設(shè)PAB、PBC、PCD、PDA的外接圓圓心分別為O1、O2、O3、O4,求證:OP、O1O3、O2O4共點(diǎn)(199

14、0年全國(guó)聯(lián)賽)證明 O為ABC的外心, OA=OB O1為PAB的外心,O1A=O1B OO1AB作PCD的外接圓O3,延長(zhǎng)PO3與所作圓交于點(diǎn)E,并與AB交于點(diǎn)F,連DE,則Ð1=Ð2=Ð3,ÐEPD=ÐBPF, ÐPFB=ÐEDP=90° PO3AB,即OO1PO3同理,OO3PO1即OO1PO3是平行四邊形 O1O3與PO互相平分,即O1O3過(guò)PO的中點(diǎn)同理,O2O4過(guò)PO中點(diǎn) OP、O1O3、O2O4三直線共點(diǎn)例10 ABC是等腰三角形,AB=AC,若M是BC的中點(diǎn),O是直線AM上的點(diǎn),使OBAB;Q是BC

15、上不同于B、C的任一點(diǎn);E在直線AB上,F(xiàn)在直線AC上,使E、Q、F不同且共線 求證:OQEF當(dāng)且僅當(dāng)QE=QF 分析 證明“當(dāng)且僅當(dāng)”時(shí),既要由已知OQEF證明QE=QF,也要由QE=QF證明OQEF證明 連OE、OF、OC先證OQEFÞQE=QFOBAB,OQQEÞO、Q、B、E四點(diǎn)共圓ÞOEQ=OBM由對(duì)稱性知OCCA,OQQFÞO、Q、F、C四點(diǎn)共圓ÞOFQ=OCQ,又OBC=OCBÞOEF=OFEÞOE=OFÞQE=QF再證QE=QFÞOQEF(用同一法)過(guò)Q作E¢F¢OQ,

16、交AB于E¢,交AC于F¢由上證,可得QE¢=QF¢若E¢F¢與EF不重合,則EF與E¢F¢互相平分于Q,則EE¢F¢F為平行四邊形,EE¢FF¢,這與AB不與AC平行矛盾從而E¢F¢與EF重合情景再現(xiàn)8以ABC的三邊為邊向形外作正方形ABDE、BCFG、ACHK,設(shè)L、M、N分別為DE、FG、HK的中點(diǎn)求證:AM、BN、CL交于一點(diǎn)TSONMO2O19如圖,已知兩個(gè)半徑不相等的圓O1,O2相交于M、N兩點(diǎn),O1,O2分別與O內(nèi)切于點(diǎn)S、T,求證:OMMN

17、的充要條件是S、N、T三點(diǎn)共線10給出銳角ABC,以AB為直徑的圓與AB邊的高CC及其延長(zhǎng)線交于M,N.以AC為直徑的圓與AC邊的高BB及其延長(zhǎng)線將于P,Q.求證:M,N,P,Q四點(diǎn)共圓.ABCKMNPQBC(第19屆美國(guó)數(shù)學(xué)奧林匹克)習(xí)題201選擇題:(1) 如圖,在四邊形ABCD的對(duì)角線的延長(zhǎng)線上取一點(diǎn)P,過(guò)P作兩條直線分別交AB、BC、CD、DA于點(diǎn)R、Q、N、M,記t···,則t的值A(chǔ)t>1 Bt1 Ct<1 Dt的值不定 (2)如圖,在不等邊三角形ABC內(nèi)取異于內(nèi)心的點(diǎn)P,連接PA、PB、PC,把角A、B、C分成、,記Msinsinsin,N

18、sinsinsin則AM>N BMN CM<N D不能確定2填空題:(1)如圖,若=2,則= (2)三角形三個(gè)旁切圓與三角形三邊BC、CA、AB切于點(diǎn)D、E、F,則··= 3(Desargues定理)已知直線AA1、BB1、CC1相交于點(diǎn)O,直線AB與A1B1交于點(diǎn)X,BC與B1C1交于點(diǎn)Y,CA與C1A1交于點(diǎn)Z,求證:X、Y、Z共線4已知ABC外有三點(diǎn)M、N、R,且BARCAN,CBMABR,ACNBCM,證明:AM、BN、CR三線交于一點(diǎn)RQPDCBA5設(shè)P為正方形ABCD的邊CD上任一點(diǎn),過(guò)A、D、P作 一圓交BD于Q,過(guò)C、P、Q作一圓交BD于R,求證

19、:A、P、R三點(diǎn)共線A'ZYXWVUC'B'CBA6如圖,兩個(gè)全等三角形ABC與A¢B¢C¢,它們的對(duì)應(yīng)邊也互相平行,因而兩個(gè)三角形內(nèi)部的公共部分構(gòu)成一個(gè)六邊形,求證:此六邊形的三條對(duì)角線UX、VY、WZ交于一點(diǎn)7O1,O2外切于點(diǎn)P,QR為兩圓的公切線,其中Q、R分別為O1,O2上的切點(diǎn),過(guò)Q且垂直于QO2的直線與過(guò)R且垂直于RO1的直線交于點(diǎn)I,INO1O2,垂足為N,IN與QR交于點(diǎn)M,證明:PM、RO1、QO2三條直線交于一點(diǎn)NMCBADFEQPH8.設(shè)ABC為銳角三角形,高BE交以AC為直徑的圓于點(diǎn)P、Q,高CF交以AB為直徑的圓

20、于點(diǎn)M、N,求證:P、Q、M、N四點(diǎn)共圓9. 凸四邊形ABCD的對(duì)角線AC、BD互相垂直并交于點(diǎn)E,求證:點(diǎn)E關(guān)于此四邊形的四邊的對(duì)稱點(diǎn)P、Q、R、S共圓ABCDOEFGMNK10. 四邊形ABCD的對(duì)角線AC、BD互相垂直,對(duì)角線交于點(diǎn)P,PFAB于E,PFBC于F,PGCD于G,PHDA于H,又EP、FP、GP、HP的延長(zhǎng)線分別交CD、DA、AB、BC于點(diǎn)E¢、F¢、G¢、H¢,求證:E¢、F¢、G¢、H¢四點(diǎn)與E、F、G、H八點(diǎn)共圓 11. 以銳角ABC的邊BC為直徑作圓交高AD于G,交AC、AB于E、F,G

21、K為直徑,連KE、KF交BC于M、N,求證:BN=CM12已知:如圖,I為ABC的內(nèi)心,作直線IP、IR,使PIA=RIA=(0<<BAC),IP、IR分別交直線AB、AC于P,Q;R,S(1)求證:P、Q、R、S四點(diǎn)共圓(2)若=30°,E、F分別為點(diǎn)I關(guān)于AB、AC的對(duì)稱點(diǎn),直線BE、CF交于點(diǎn)D,求證:E、F、F在PQRS上DSRQPFEICBA本節(jié)“情景再現(xiàn)”解答1證明:設(shè)F為I切AB的切點(diǎn),延長(zhǎng)DI交I于K,連AK延長(zhǎng)交BC于G,過(guò)K作I的切線PQ由梯形PKDB可證PK·BD=IF2;(連PI、BI,則PI、BI平分ÐQPB與ÐPB

22、D,于是PIB為Rt.,IF為其直角邊上的高)同理,QK·CD=IF2 PK·BD=QK·CD;Þ=,又,PQBCÞ=, =,ÞCD=BG, N是DG中點(diǎn)又:M為AD中點(diǎn)N為GD中點(diǎn)ÞMNAG I為KD中點(diǎn),N為GD中點(diǎn)ÞINKG M、I、N三點(diǎn)共線說(shuō)明 由于BG=CD=pc,故點(diǎn)G是ABC的在ÐA內(nèi)部的旁切圓與BC的切點(diǎn);證明三點(diǎn)共線常證明過(guò)同一點(diǎn)的兩直線平行于同一直線2. 提示:根據(jù)中垂線的性質(zhì)很容易證明三條中垂線交于一點(diǎn),可以用構(gòu)造法證明三條高所在直線交于一點(diǎn);用Ceva定理很容易證明三條中線交于一

23、點(diǎn);直接根據(jù)角平分線的性質(zhì)很容易證明三條角平分線交于一點(diǎn)3. 解 連OP、OQ,PBPOQ=QOR=40° C為中點(diǎn),QOC=20°,POC=60°POC為等邊三角形 B為半徑OC中點(diǎn),A為PQ中點(diǎn),PAO=PBO=90° P、A、B、O四點(diǎn)共圓 OAB=OPB=30°4.證明:如圖,連AC,DF,DE因?yàn)镸在O上,則AMC=60°=ABC=ACB,OAFDMCBE有AMCACF,得又因?yàn)锳MC=BAC,所以AMCEAC,得所以,又BAD=BCD=120°,知CFDADE所以ADE=DFB因?yàn)锳DBC,所以ADF=DFB=A

24、DE,于是F,E,D三點(diǎn)共線5證明 連DO,AR,EO,AQ ADR(ARBP),AOR(ARCP), ADRAOR, A、O、D、R四點(diǎn)共圓 AODARD180°,同理,AQEAOE180°,而ARPAQP180°, AODAOE180° D、O、E三點(diǎn)共線 ADOAROABC, DEBC6證明 延長(zhǎng)HA到K,使AKBC,連BK、CK則可證BAKDNC,CAKFCB AKBC CDBK,BFCK,即可把KH、CD、BF看成KBC的三條高所在直線,從而此三線共點(diǎn)7. 證明 取EG的中點(diǎn)M,連BM、FM、CM,則FMEG EBF=EMF=90°,

25、 B、F、M、E四點(diǎn)共圓 MBF=MEF=60°同理MCF=60°即MBC為正三角形點(diǎn)M為定點(diǎn) EG的中點(diǎn)就是正BCM的頂點(diǎn)M,同理E'G'的中點(diǎn)也是BCM的頂點(diǎn)M即EG與E'G'互相平分 EE'GG'是平行四邊形8證明 設(shè)AM、BN、CL分別交BC、CA、AB于P、Q、R易知,CBMBCMQCNQANLARLBR=;同理,=;=三式相乘即得··=1,由Ceva定理的逆定理知AM、BN、CL交于一點(diǎn)9證明 (1)充分性:若S、N、T三點(diǎn)共線,證明OMMN連O1O2,O1N,O1M,O2N,O2M OSOT,

26、O1NO1S,O2NO2T, OST、O1SN與O2NT都是等腰三角形 O1NO2O為平行四邊形 O1NOO2,OO1O2N,但O1NO1M,O2NO2M, OO1MO2,OO2MO1 OO1MMO2O, O1O2OM, O1O2MN, OMN90°(2)必要性:若OMMN,證明S、N、T三點(diǎn)共線分別連SN、NT,設(shè)O、O1、O2的半徑分別為r、r1、r2,OMa O1O2MN,OMMN, O1O2OM OMO1與OMO2的面積相等有一邊公共,且周長(zhǎng)都等于ar(2p) p(pa)(pr1)(p(rr1)p(pa)(pr2)(p(rr2)化簡(jiǎn)得 (r1r2)(rr1r2)0,由r1r2

27、,得rr1r2于是OO1O2MO2N,OO2O1MO1N OO1NO2為平行四邊形O1OO2O1NO2NO1SNO2T在等腰O1SN中,SNO1(180°O1OO2),TNO2(180°O1OO2) SNO1O1NO2O2NT180°即S、N、T三點(diǎn)共線10分析:設(shè)PQ,MN交于K點(diǎn),連接AP,AM. 欲證M,N,P,Q四點(diǎn)共圓,須證MK·KNPK·KQ,即證(MC-KC)(MC+KC)(PB-KB)·(PB+KB) 或MC2-KC2=PB2-KB2 .不難證明 AP=AM,從而有AB2+PB2=AC2+MC2.故 MC2-PB2=A

28、B2-AC2=(AK2-KB2)-(AK2-KC2)=KC2-KB2.由即得,命題得證.習(xí)題20解答1選擇題:(1)提示:··=1,··=1,相乘即得t1,故選B(2)提示:延長(zhǎng)AP、BP、CP與對(duì)邊交于點(diǎn)D、E、F,則 =,=,同理,=,= MN選B2填空題:(1)提示:··=1,現(xiàn)=,=,代入得=(2)提示:如圖,=,同理可得其余故結(jié)果13證明:由OA1B1與直線AB相交,得··=1;由OA1C1與直線AC相交,得··=1;由OB1C1與直線BC相交,得··=1三式相乘,

29、得··=1由Menelaus的逆定理,知X、Y、Z共線4證明 設(shè)AM、BN、CR分別與BC、CA、AB交于點(diǎn)M¢,N¢,R¢則=;同理,=;=三式相乘即得··=1,由Ceva定理的逆定理知AM、BN、CR交于一點(diǎn)5證明 設(shè)AP交BD于R¢,即證明R與R¢重合,連PQ、RC A、D、P、Q四點(diǎn)共圓, DQPDAP C、Q、R、P四點(diǎn)共圓, DQPDCR, DARDCR但若AP交BD于R¢,由對(duì)稱性知DCR¢DAP. CR與CR¢ 重合,即R與R¢ 重合 A、R、P三點(diǎn)

30、共線6證明 連AA¢,BB¢,CC¢,UX,VY,WZ,易證,AZA¢W是平行四邊形, AA¢、WZ交于AA¢的中點(diǎn)OAUA¢X是平行四邊形, AA¢與UX交于AA¢中點(diǎn)OAVA¢Y是平行四邊形, AA¢與VY交于AA¢中點(diǎn)O UX、VY、WZ交于一點(diǎn)說(shuō)明 ABC與A¢B¢C¢是位似圖形對(duì)應(yīng)點(diǎn)連線都交于一點(diǎn)7證明 設(shè)O1、O2的半徑分別為r1,r2,則O1O2r1r2 IQO2INO2, I、Q、N、O2四點(diǎn)共圓 QIMQO2O1,又IQMO2Q

31、O190°RQO2, IQMO2QO1,=,同理= =, MPO2R設(shè)O1R與O2Q交于點(diǎn)S, O1QO2R, O1QSRO2S, =過(guò)S作MPO2R,交QR于M,則=,即M¢與M重合,P¢與P重合 PM、O1R,O2Q三線共點(diǎn)8.證明 設(shè)BE、CF交于點(diǎn)H,則BC邊上的高AD過(guò)點(diǎn)H ADC=90°,AFC=90°, D、F都在以AC為直徑的圓上 HP·HQ=HA·HD,同理,HM·HN=HA·HD HP·HQ=HM·HN, P、Q、M、N四點(diǎn)共圓說(shuō)明 如果不用圓冪定理的逆定理,則可連PM、QN,再證明HPMHNQ,得到MPH=QNH,從而得到結(jié)論9.證明: P、E關(guān)于AB對(duì)稱, AP=A

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論