2012年高考真題匯編——理科數(shù)學(xué):10:圓錐曲線2_第1頁(yè)
2012年高考真題匯編——理科數(shù)學(xué):10:圓錐曲線2_第2頁(yè)
2012年高考真題匯編——理科數(shù)學(xué):10:圓錐曲線2_第3頁(yè)
2012年高考真題匯編——理科數(shù)學(xué):10:圓錐曲線2_第4頁(yè)
2012年高考真題匯編——理科數(shù)學(xué):10:圓錐曲線2_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2012高考真題分類匯編:圓錐曲線三、解答題部分19.【2012高考江蘇19】(16分)如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,已知和都在橢圓上,其中為橢圓的離心率(1)求橢圓的方程;(2)設(shè)是橢圓上位于軸上方的兩點(diǎn),且直線與直線平行,與交于點(diǎn)P(i)若,求直線的斜率;(ii)求證:是定值【答案】解:(1)由題設(shè)知,由點(diǎn)在橢圓上,得,。由點(diǎn)在橢圓上,得橢圓的方程為。(2)由(1)得,又, 設(shè)、的方程分別為,。 。 。 同理,。 (i)由得,。解得=2。 注意到,。 直線的斜率為。 (ii)證明:,即。 。 由點(diǎn)在橢圓上知,。 同理。 由得, 。 是定值。 20.【2012高考真題浙江

2、理21】(本小題滿分15分)如圖,橢圓C:(ab0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為不過(guò)原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分()求橢圓C的方程;() 求ABP的面積取最大時(shí)直線l的方程【命題立意】本題主要考查橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,同時(shí)考查解析幾何的基本思想方法和運(yùn)算求解能力?!敬鸢浮?)由題:; (1)左焦點(diǎn)(c,0)到點(diǎn)P(2,1)的距離為: (2)由(1) (2)可解得:所求橢圓C的方程為:()易得直線OP的方程:yx,設(shè)A(xA,yA),B(xB,yB),R(x0,y0)其中y0x0A,B在橢圓上,設(shè)直線AB的方程為l:y(m0),代入

3、橢圓:顯然m且m0由上又有:m,|AB|點(diǎn)P(2,1)到直線l的距離表示為:SABPd|AB|m2|,當(dāng)|m2|,即m3 或m0(舍去)時(shí),(SABP)max此時(shí)直線l的方程y21.【2012高考真題遼寧理20】(本小題滿分12分) 如圖,橢圓:,a,b為常數(shù)),動(dòng)圓,。點(diǎn)分別為的左,右頂點(diǎn),與相交于A,B,C,D四點(diǎn)。 ()求直線與直線交點(diǎn)M的軌跡方程; ()設(shè)動(dòng)圓與相交于四點(diǎn),其中,。若矩形與矩形的面積相等,證明:為定值?!敬鸢浮俊军c(diǎn)評(píng)】本題主要考查圓的性質(zhì)、橢圓的定義、標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線方程求解、直線與橢圓的關(guān)系和交軌法在求解軌跡方程組的運(yùn)用。本題考查綜合性較強(qiáng),運(yùn)算量較大。在求

4、解點(diǎn)的軌跡方程時(shí),要注意首先寫(xiě)出直線和直線的方程,然后求解。屬于中檔題,難度適中。22.【2012高考真題湖北理】(本小題滿分13分)設(shè)是單位圓上的任意一點(diǎn),是過(guò)點(diǎn)與軸垂直的直線,是直線與 軸的交點(diǎn),點(diǎn)在直線上,且滿足. 當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線()求曲線的方程,判斷曲線為何種圓錐曲線,并求其焦點(diǎn)坐標(biāo); ()過(guò)原點(diǎn)且斜率為的直線交曲線于,兩點(diǎn),其中在第一象限,它在軸上的射影為點(diǎn),直線交曲線于另一點(diǎn). 是否存在,使得對(duì)任意的,都有?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由. 【答案】()如圖1,設(shè),則由,可得,所以,. 因?yàn)辄c(diǎn)在單位圓上運(yùn)動(dòng),所以. 將式代入式即得所求曲線的方程為. 因?yàn)?/p>

5、,所以當(dāng)時(shí),曲線是焦點(diǎn)在軸上的橢圓,兩焦點(diǎn)坐標(biāo)分別為,;當(dāng)時(shí),曲線是焦點(diǎn)在軸上的橢圓,兩焦點(diǎn)坐標(biāo)分別為,. ()解法1:如圖2、3,設(shè),則,直線的方程為,將其代入橢圓的方程并整理可得.依題意可知此方程的兩根為,于是由韋達(dá)定理可得,即.因?yàn)辄c(diǎn)H在直線QN上,所以.于是,. 而等價(jià)于,即,又,得,故存在,使得在其對(duì)應(yīng)的橢圓上,對(duì)任意的,都有. 圖2 圖3 圖1O D xyAM第21題解答圖 解法2:如圖2、3,設(shè),則,因?yàn)?,兩點(diǎn)在橢圓上,所以 兩式相減可得. 依題意,由點(diǎn)在第一象限可知,點(diǎn)也在第一象限,且,不重合,故. 于是由式可得. 又,三點(diǎn)共線,所以,即. 于是由式可得.而等價(jià)于,即,又,得,

6、故存在,使得在其對(duì)應(yīng)的橢圓上,對(duì)任意的,都有. 23.【2012高考真題北京理19】(本小題共14分)【答案】解:(1)原曲線方程可化簡(jiǎn)得:由題意可得:,解得:(2)由已知直線代入橢圓方程化簡(jiǎn)得:,解得:由韋達(dá)定理得:,設(shè),方程為:,則,欲證三點(diǎn)共線,只需證,共線即成立,化簡(jiǎn)得:將代入易知等式成立,則三點(diǎn)共線得證。24.【2012高考真題廣東理20】(本小題滿分14分)在平面直角坐標(biāo)系xOy中,已知橢圓C1:的離心率e=,且橢圓C上的點(diǎn)到Q(0,2)的距離的最大值為3.(1)求橢圓C的方程;(2)在橢圓C上,是否存在點(diǎn)M(m,n)使得直線:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A

7、、B,且OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及相對(duì)應(yīng)的OAB的面積;若不存在,請(qǐng)說(shuō)明理由【答案】本題是一道綜合性的題目,考查直線、圓與圓錐曲線的問(wèn)題,涉及到最值與探索性問(wèn)題,意在考查學(xué)生的綜合分析問(wèn)題與運(yùn)算求解的能力。25.【2012高考真題重慶理20】(本小題滿分12分()小問(wèn)5分()小問(wèn)7分) 如圖,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左右焦點(diǎn)分別為,線段 的中點(diǎn)分別為,且 是面積為4的直角三角形.()求該橢圓的離心率和標(biāo)準(zhǔn)方程;()過(guò) 做直線交橢圓于P,Q兩點(diǎn),使,求直線的方程【答案】【命題立意】本題考查橢圓的標(biāo)準(zhǔn)方程,平面向量數(shù)量積的基本運(yùn)算,直線的一般式方程以及直線與

8、圓錐曲線的綜合問(wèn)題.26.【2012高考真題四川理21】(本小題滿分12分) 如圖,動(dòng)點(diǎn)到兩定點(diǎn)、構(gòu)成,且,設(shè)動(dòng)點(diǎn)的軌跡為。()求軌跡的方程;()設(shè)直線與軸交于點(diǎn),與軌跡相交于點(diǎn),且,求的取值范圍?!敬鸢浮勘绢}主要考查軌跡方程的求法,圓錐曲線的定義等基礎(chǔ)知識(shí),考查基本運(yùn)算能力,邏輯推理能力,考查方程與函數(shù)、數(shù)形結(jié)合、分類討論、化歸與轉(zhuǎn)化等數(shù)學(xué)思想 27.【2012高考真題新課標(biāo)理20】(本小題滿分12分)設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,已知以為圓心,為半徑的圓交于兩點(diǎn);(1)若,的面積為;求的值及圓的方程;(2)若三點(diǎn)在同一直線上,直線與平行,且與只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到距離的比值.【答案】(1

9、)由對(duì)稱性知:是等腰直角,斜邊 點(diǎn)到準(zhǔn)線的距離 圓的方程為 (2)由對(duì)稱性設(shè),則 點(diǎn)關(guān)于點(diǎn)對(duì)稱得: 得:,直線 切點(diǎn) 直線坐標(biāo)原點(diǎn)到距離的比值為.28.【2012高考真題福建理19】如圖,橢圓E:的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率.過(guò)F1的直線交橢圓于A、B兩點(diǎn),且ABF2的周長(zhǎng)為8.()求橢圓E的方程.()設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相較于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過(guò)點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.【答案】本題主要考查橢圓的簡(jiǎn)單幾何性質(zhì)、圓的性質(zhì)、直線與圓錐曲線的位置關(guān)系、平面向量的應(yīng)用等基礎(chǔ)知

10、識(shí),考查推理論證能力、基本運(yùn)算能力,以及函數(shù)與方程的思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.29.【2012高考真題上海理22】(4+6+6=16分)在平面直角坐標(biāo)系中,已知雙曲線:(1)過(guò)的左頂點(diǎn)引的一條漸進(jìn)線的平行線,求該直線與另一條漸進(jìn)線及軸圍成的三角形的面積;(2)設(shè)斜率為1的直線交于、兩點(diǎn),若與圓相切,求證:;(3)設(shè)橢圓:,若、分別是、上的動(dòng)點(diǎn),且,求證:到直線的距離是定值.【答案】過(guò)點(diǎn)A與漸近線平行的直線方程為,,則到直線的距離為.設(shè)到直線的距離為.【點(diǎn)評(píng)】本題主要考查雙曲線的概念、標(biāo)準(zhǔn)方程、幾何性質(zhì)及其直線與雙曲線的關(guān)系、橢圓的標(biāo)準(zhǔn)方程和圓的有關(guān)性質(zhì).特別要注意直線與雙曲線的關(guān)系問(wèn)

11、題,在雙曲線當(dāng)中,最特殊的為等軸雙曲線,它的離心率為,它的漸近線為,并且相互垂直,這些性質(zhì)的運(yùn)用可以大大節(jié)省解題時(shí)間,本題屬于中檔題 30.【2012高考真題陜西理19】本小題滿分12分)已知橢圓,橢圓以的長(zhǎng)軸為短軸,且與有相同的離心率。(1)求橢圓的方程;(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓和上,求直線的方程。 【答案】 31.【2012高考真題山東理21】(本小題滿分13分)在平面直角坐標(biāo)系中,是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過(guò)三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.()求拋物線的方程;()是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)

12、明理由;()若點(diǎn)的橫坐標(biāo)為,直線與拋物線有兩個(gè)不同的交點(diǎn),與圓有兩個(gè)不同的交點(diǎn),求當(dāng)時(shí),的最小值.【答案】32.【2012高考真題江西理21】 (本題滿分13分)已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足.(1) 求曲線C的方程;(2) 動(dòng)點(diǎn)Q(x0,y0)(-2x02)在曲線C上,曲線C在點(diǎn)Q處的切線為l向:是否存在定點(diǎn)P(0,t)(t0),使得l與PA,PB都不相交,交點(diǎn)分別為D,E,且QAB與PDE的面積之比是常數(shù)?若存在,求t的值。若不存在,說(shuō)明理由?!敬鸢浮俊军c(diǎn)評(píng)】本題以平面向量為載體,考查拋物線的方程,直線與拋物線的位置關(guān)系以及分類討論的數(shù)

13、學(xué)思想. 高考中,解析幾何解答題一般有三大方向的考查.一、考查橢圓的標(biāo)準(zhǔn)方程,離心率等基本性質(zhì),直線與橢圓的位置關(guān)系引申出的相關(guān)弦長(zhǎng)問(wèn)題,定點(diǎn),定值,探討性問(wèn)題等;二、考查拋物線的標(biāo)準(zhǔn)方程,準(zhǔn)線等基本性質(zhì),直線與拋物線的位置關(guān)系引申出的相關(guān)弦長(zhǎng)問(wèn)題,中點(diǎn)坐標(biāo)公式,定點(diǎn),定值,探討性問(wèn)題等;三、橢圓,雙曲線,拋物線綜合起來(lái)考查.一般橢圓與拋物線結(jié)合考查的可能性較大,因?yàn)樗鼈兌际强季V要求理解的內(nèi)容.33.【2012高考真題全國(guó)卷理21】(本小題滿分12分)(注意:在試卷上作答無(wú)效)已知拋物線C:y=(x+1)2與圓M:(x-1)2+()2=r2(r0)有一個(gè)公共點(diǎn),且在A處兩曲線的切線為同一直線l

14、.()求r;()設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點(diǎn)為D,求D到l的距離.【答案】34.【2012高考真題天津理19】(本小題滿分14分)設(shè)橢圓的左、右頂點(diǎn)分別為A,B,點(diǎn)P在橢圓上且異于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).()若直線AP與BP的斜率之積為,求橢圓的離心率;()若|AP|=|OA|,證明直線OP的斜率k滿足【答案】35.【2012高考真題湖南理21】(本小題滿分13分)www.z%zstep.co*&m在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線x=2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.()求曲線C1的方程;()設(shè)P(x0,y0)(y0±3)為圓C2外一點(diǎn),過(guò)P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.【答案】()解法1 :設(shè)M的坐標(biāo)為,由已知得,易知圓上的點(diǎn)位于直線的右側(cè).于是,所以.化簡(jiǎn)得曲線的方程為.解法2 :由題設(shè)知,曲線上任意一點(diǎn)M到圓心的距離等于它到直線的距離,因此,曲線是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,故其方程為.()當(dāng)點(diǎn)P在直線上運(yùn)動(dòng)時(shí),P的坐標(biāo)為,又,則過(guò)P且與圓相切得直線的斜率存在且不為0,每條切線都與拋物線有兩個(gè)交點(diǎn),切線方程為.于是整理得 設(shè)過(guò)P所作的兩條切線的斜率分

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論