下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、初中數(shù)學(xué)公式大全1 過兩點(diǎn)有且只有一條直線2 兩點(diǎn)之間線段最短3 同角或等角的補(bǔ)角相等4 同角或等角的余角相等5 過一點(diǎn)有且只有一條直線和已知直線垂直6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行9 同位角相等,兩直線平行10 內(nèi)錯角相等,兩直線平行11 同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13 兩直線平行,內(nèi)錯角相等14 兩直線平行,同旁內(nèi)角互補(bǔ)15 定理 三角形兩邊的和大于第三邊16 推論 三角形兩邊的差小于第三邊17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的
2、和等于180°18 推論1 直角三角形的兩個(gè)銳角互余19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21 全等三角形的對應(yīng)邊、對應(yīng)角相等22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個(gè)三角形全等26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩
3、邊的距離相等28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對等角)31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形3
4、7 在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38 直角三角形斜邊上的中線等于斜邊上的一半39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42 定理1 關(guān)于某條直線對稱的兩個(gè)圖形是全等形43 定理 2 如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線44定理3 兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上45逆定理 如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)
5、圖形關(guān)于這條直線對稱46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c247勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2 ,那么這個(gè)三角形是直角三角形48定理 四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°51推論 任意多邊的外角和等于360°52平行四邊形性質(zhì)定理1 平行四邊形的對角相等53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等54推論 夾在兩條平行線間的平行線段相等55平行四邊形性質(zhì)定理3 平行四邊形的對角線互
6、相平分56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角61矩形性質(zhì)定理2 矩形的對角線相等62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形63矩形判定定理2 對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1 菱形的四條邊都相等65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷
7、;267菱形判定定理1 四邊都相等的四邊形是菱形68菱形判定定理2 對角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71定理1 關(guān)于中心對稱的兩個(gè)圖形是全等的72定理2 關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分73逆定理 如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線相等76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形
8、77對角線相等的梯形是等腰梯形78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79 推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰80 推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性質(zhì) 如果ab=cd,那么(a±b)b
9、=(c±d)d85 (3)等比性質(zhì) 如果ab=cd=mn(b+d+n0),那么(a+c+m)(b+d+n)=ab86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91 相似三角形判定
10、定理1 兩角對應(yīng)相等,兩三角形相似(ASA)92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93 判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94 判定定理3 三邊對應(yīng)成比例,兩三角形相似(SSS)95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似96 性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97 性質(zhì)定理2 相似三角形周長的比等于相似比98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角
11、的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。110垂徑定理 垂直于弦的直徑
12、平分這條弦并且平分弦所對的兩條弧111推論1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2 圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等116定理 一條弧所對的圓周角等于它所對的圓心角的一半117推論1 同弧或等弧所對的圓周角相等;同圓或等
13、圓中,相等的圓周角所對的弧也相等118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角121直線L和O相交 dr直線L和O相切 d=r直線L和O相離 dr122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)125推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心126切線長定理 從圓外一點(diǎn)引圓的兩條切線,它
14、們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角127圓的外切四邊形的兩組對邊的和相等128弦切角定理 弦切角等于它所夾的弧對的圓周角129推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)133推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135兩圓外離 dR+r 兩圓外
15、切 d=R+r兩圓相交 R-rdR+r(Rr)兩圓內(nèi)切 d=R-r(Rr) 兩圓內(nèi)含dR-r(Rr)136定理 相交兩圓的連心線垂直平分兩圓的公共弦137定理 把圓分成n(n3):依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°n140定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn2 p表示正n邊形的周長142正三角形面積3a4 a表
16、示邊長143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°n=360°化為(n-2)(k-2)=4144弧長計(jì)算公式:L=n兀R180145扇形面積公式:S扇形=n兀R2360=LR2146內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)147完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2148平方差公式:(a+b)(a-b)=a2-b2(還有一些,大家?guī)脱a(bǔ)充吧)實(shí)用工具:常用數(shù)學(xué)公式公式分類 公式表達(dá)式乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45035-2024棉花集中成熟栽培技術(shù)要求
- 2025年度衛(wèi)星通信地面站安裝與維護(hù)合同3篇
- 垃圾處理設(shè)施建設(shè)指南
- 職業(yè)病防治違規(guī)處罰細(xì)則
- 風(fēng)電場開發(fā)地勘招投標(biāo)文件
- 制造業(yè)總經(jīng)理聘用合同范本
- 農(nóng)業(yè)生產(chǎn)操作維護(hù)指南
- 醫(yī)療器械使用檔案移交標(biāo)準(zhǔn)
- 知識產(chǎn)權(quán)風(fēng)險(xiǎn)防范與內(nèi)部控制
- 冷鏈物流設(shè)備租賃協(xié)議
- 瀝青路面彎沉溫度修正
- 軟裝公司商業(yè)計(jì)劃書
- 湖北省武漢市硚口區(qū)2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(含答案)
- 重慶市墊江區(qū)2023-2024學(xué)年部編版七年級上學(xué)期期末歷史試卷
- 云南省昆明市呈貢區(qū)2023-2024學(xué)年九年級上學(xué)期期末數(shù)學(xué)試卷+
- 云南省昭通市巧家縣2023-2024學(xué)年五年級上學(xué)期期末考試語文試卷
- 有趣的英語小知識講座
- 2024年擬攻讀博士學(xué)位期間研究計(jì)劃
- 國際知名高科技園區(qū)發(fā)展及對我國的經(jīng)驗(yàn)借鑒
- 財(cái)政投資評審項(xiàng)目造價(jià)咨詢服務(wù)方案審計(jì)技術(shù)方案
- 2023年民兵冬訓(xùn)總結(jié)
評論
0/150
提交評論