BLDCvPPT課件_第1頁
BLDCvPPT課件_第2頁
BLDCvPPT課件_第3頁
BLDCvPPT課件_第4頁
BLDCvPPT課件_第5頁
已閱讀5頁,還剩50頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、Agenda Basics of a BLDC Motor Topology BLDC Motor with Hall Sensors BLDC Motor with Hardware BEMF-Detection BLDC Motor Sensor less Control Switching Pattern for Driving a BLDC How to use the CAPCOM6E for a BLDC Introduction CAPCOM6E for BLDC purpose CAPCOM6E & ADC第1頁/共55頁Electrical Motor TypesEl

2、ectricMotor typesACAsynchronousSynchronousInductionStepperSynchronousPMSMSwitched Rel.DC第2頁/共55頁BLDCBasics 第3頁/共55頁Basics of a BLDC Motor DC Motor with 3 Brushes VWUUVW+-q 3-Phase Brush-less DC MotorAccording to the theory of DC machine, the motor rotational speed can be written as follows:N = ( Ud

3、- I R ) / (Ke )While,“N” stands for the motor rotational speed“Ud” stands for the DC voltage applied to the motor windings“R” is the pure resistance of the winding while “I” stands for the winding current “Ke” is the magnet coefficient while “ ” stands for the motor magnetic flux From the above form

4、ula, there are two methods to change the speed of DC motor: One is to change the DC voltage of the motor windings (Ud), the other one is to change the magnetic flux of the motor (). As the BLDC motor has permanent magnet rotor, only the first method can be used in practical application. The principa

5、l of generating variable DC voltage is to use PWM for chopping: change the duty cycle of the PWM voltage, proportionally change the DC voltage. NS第4頁/共55頁How an Inverter Turns a BLDC (1)第5頁/共55頁How an Inverter Turns a BLDC (2)第6頁/共55頁How an Inverter Turns a BLDC (3)第7頁/共55頁How an Inverter Turns a BL

6、DC (4)第8頁/共55頁How an Inverter Turns a BLDC (5)第9頁/共55頁How an Inverter Turns a BLDC (6)第10頁/共55頁BLDC with Hall Sensors Switching Patternq Typical Switching Pattern for a BLDC Hall Sequence depends on motor construction Output pattern levels depends on inverter topology第11頁/共55頁BLDC withHall Sensors第1

7、2頁/共55頁BLDC with Hall Sensors - Topologyq Typical Circuit Block Diagram Hall Sensors detect the position Over current protection and control via ADC第13頁/共55頁Block Diagram CAPCOM6E for BLDC Usage第14頁/共55頁Hardware NoiseSuppressionch0 gets capturedvalue for act. speedch1 comparefor phase delaych2 compa

8、refor timeoutCC6xact. speedCC60phase delayCC61timeoutCC62COUT6y110001CCPOS2CCPOS0111000CCPOS1001111CaptureEventResets T12Usage of CAPCOM6E to Control a BLDC (1)q BEMF-Detection/Hall SignalsHW-noise filter on CCPOSx inputs (BEMF-signals)第15頁/共55頁Hardware NoiseSuppressionch0 gets capturedvalue for act

9、. speedch1 comparefor phase delaych2 comparefor timeoutCC6xact. speedCC60phase delayCC61timeoutCC62COUT6y110001CCPOS2CCPOS0111000CCPOS1001111CaptureEventResets T12Usage of CAPCOM6E to Control a BLDC (2)q BEMF-Detection/Hall SignalsHW-noise filter on CCPOSx inputs (BEMF-signals)automatic reset of T12

10、 with interruptactual speed by capture ch0第16頁/共55頁Hardware NoiseSuppressionch0 gets capturedvalue for act. speedch1 comparefor phase delaych2 comparefor timeoutCC6xact. speedCC60phase delayCC61timeoutCC62COUT6y110001CCPOS2CCPOS0111000CCPOS1001111CaptureEventResets T12Usage of CAPCOM6E to Control a

11、BLDC (3)q BEMF-Detection/Hall SignalsHW-noise filter on CCPOSx inputs (BEMF-signals)automatic reset of T12 with interruptactual speed by capture ch0phase delay function on ch1第17頁/共55頁Hardware NoiseSuppressionch0 gets capturedvalue for act. speedch1 comparefor phase delaych2 comparefor timeoutCC6xac

12、t. speedCC60phase delayCC61timeoutCC62COUT6y110001CCPOS2CCPOS0111000CCPOS1001111CaptureEventResets T12Usage of CAPCOM6E to Control a BLDC (4)q BEMF-Detection/Hall SignalsHW-noise filter on CCPOSx inputs (BEMF-signals)automatic reset of T12 with interruptactual speed by capture ch0phase delay functio

13、n on ch1time out function on ch2第18頁/共55頁Usage of CAPCOM6E Hall Sensor Mode (1)CCPOSx Inputsfor Hallsensor Interface q MCMOUTSH / MCMOUTSL SW programmable state machine第19頁/共55頁Usage of CAPCOM6E Hall Sensor Mode (2)CCPOSx Inputsedge detection triggers Dead Time Counter q MCMOUTSH / MCMOUTSL compare

14、CCPOSx level with programmed value 第20頁/共55頁Usage of CAPCOM6E Hall Sensor Mode (2)q CCPOSx Inputsq MCMOUTSH / MCMOUTSL switch to next state on valid edge by hardware 第21頁/共55頁Usage of CAPCOM6E Hall Sensor Mode (3)q CCPOSx Inputs wait on edgeq MCMOUTSH / MCMOUTSL prepare next state by software 第22頁/共

15、55頁Usage of CAPCOM6E Modulation Control (some Choices)第23頁/共55頁Usage of CAPCOM6E Generate the PWM Pattern for BLDC第24頁/共55頁Usage of CAPCOM6E Generate the PWM Pattern for BLDC第25頁/共55頁Usage of CAPCOM6E Generate the PWM Pattern for BLDC第26頁/共55頁Usage of CAPCOM6E Generate the PWM Pattern for BLDC第27頁/共

16、55頁Usage of CAPCOM6E Generate the PWM Pattern for BLDC第28頁/共55頁Usage of CAPCOM6E Generate the PWM Pattern for BLDC第29頁/共55頁Usage of CAPCOM6E Modulation and Synchronization第30頁/共55頁Usage of CAPCOM6E Modulation and Synchronization第31頁/共55頁Usage of CAPCOM6E Modulation and Synchronization第32頁/共55頁Usage

17、of CAPCOM6E Modulation and Synchronization第33頁/共55頁Usage of CAPCOM6E to Control a BLDC (5)第34頁/共55頁Usage of CAPCOM6E to Control a BLDC (6)第35頁/共55頁Usage of CAPCOM6E to Control a BLDC (7)第36頁/共55頁Usage of CAPCOM6E to Control a BLDC (8)第37頁/共55頁BLDCSensor less第38頁/共55頁BLDC in Theory Back Electro Magne

18、tic Force Theory UP = (R x i) + (L x di/dt) + eP whereUP stands for phase voltageR stands for winding resistancei stands for actual phase currentL stands for phase inductancedi/dtstands for changment of phase current over timeePstands for electromagnetic voltage caused by magnet whilei = 0 and di/dt

19、 = 0:UP = eP by measuring UPa position detectionis possible第39頁/共55頁BLDC in Reality (1) BEMF vs. Currentq Real BEMF Voltage and Current: shape depends on magnets, motor speed, voltage第40頁/共55頁BLDC in Reality (2a) BEMF vs. Currentq Zoom In: BEMF is only visible at active switching PhaseCurrentBEMFVol

20、tage第41頁/共55頁BLDC in Reality (2b) BEMF vs. Currentq Current Commutation in a Coil Freewheeling diode conductsPhaseCurrentBEMFVoltage第42頁/共55頁BLDC in Reality (3) All Important SignalsPhaseCurrentBEMFVoltage第43頁/共55頁BLDC Sensor less with Hardware BEMF-Detectionq Typical Circuit Block Diagram Comparato

21、rs and RC-Filter detect the BEMF zero crossing for position detection第44頁/共55頁BLDC Sensor less Using ADCq Typical Circuit Block DiagramUse simple resistor divider and ADC for position detection第45頁/共55頁CAPCOM6E & ADCq Synchronize ADC on T13 T13 period match can trigger the ADC equidistant sampli

22、ng of analog signals exact timing guaranteed by hardware no timing jitter due to software delays第46頁/共55頁CAPCOM6E & ADCq Synchronize T13 on T12 T13 performs delay for stable measurement T13 period match triggers ADCq Useful for Current Measurement E.g. induction machine第47頁/共55頁CAPCOM6E & AD

23、Cq T13PM triggers ADC Delay between T13PM and high voltage switching event due to driving circuitq Useful for Voltage or Current Measurement E.g. BEMF detection Sample shortly before power device is switched off (BEMF is noise free)第48頁/共55頁CAPCOM6E & ADCq T13PM triggers ADC Delay between T13PM

24、and high voltage switching event due to driving circuitq Useful for Voltage or Current Measurement E.g. Current in DC link path Sample shortly before power device is switched off (current is noise free)第49頁/共55頁BLDC Sensor less Using ADCq T13 used forModulationADC triggerq T12 used for Phase delay q

25、 Software (for 60 sector) With every T13PMthe BEMF voltage is sampled and compared to a BEMF-wave tableWhen crossing a limit the software generates a CHE-event (1)Speed reference is captured and phase delay for T12ch1 is calculatedAt T12ch1 the pattern for the next sector is switched (2)第50頁/共55頁BLD

26、C Sensor less with Current Controlq T13 used forModulationADC triggerq T12 used for Phase delay q Software (for 60 sector) With every T13PM the ADC alternatively samplesBEMF voltagePhase currentThe current set value can be controlled by adjusting the PWM duty cycle第51頁/共55頁BLDC Sensor less Scope Sho

27、tsPort pin toggles when BEMF is below limitBEMFVoltagePhaseCurrent第52頁/共55頁q Application: Line powered Industrial Drives Power: 750 W Current: max. 5 A AC Input Voltage: 110 to 264 VACq Features: 8-bit MCU: C868 with on-chip 8 kB SRAM, with 8-bit ADC and powerful PWM module CoolSet: TDA61831G instea

28、d of a transformer for 12V supply 6 rugged IGBT DuoPacks EEPROM: 8 kB to store program + stand alone boot option Optically Isolated Serial Interface to PC for SW development + boot from PC option Protection: shut down protection for over current and over temperature Extension for alternative MCU like XC164 or TC1775 SW environment: Keil Compiler + Debugger or Mini Debugger (free software) Board c

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論