




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1/14實(shí)驗(yàn)四實(shí)驗(yàn)四: :動(dòng)物養(yǎng)殖問(wèn)題動(dòng)物養(yǎng)殖問(wèn)題 萊斯利矩陣模型萊斯利矩陣模型實(shí)驗(yàn)義務(wù)與操作實(shí)驗(yàn)義務(wù)與操作思索題與練習(xí)題思索題與練習(xí)題直線(xiàn)族及其包絡(luò)繪圖直線(xiàn)族及其包絡(luò)繪圖2/14萊斯利于萊斯利于19451945年提出用于預(yù)測(cè)單種群生物年提出用于預(yù)測(cè)單種群生物數(shù)量增長(zhǎng)的矩陣模型。數(shù)量增長(zhǎng)的矩陣模型。將一個(gè)生物種群按年齡分為將一個(gè)生物種群按年齡分為 m m 個(gè)年齡組。個(gè)年齡組。設(shè)設(shè) xk( t ) xk( t ) 表示表示 t t 時(shí)辰第時(shí)辰第 k k 個(gè)年齡組的個(gè)年齡組的生物數(shù)量生物數(shù)量, xk(0), xk(0)是初始時(shí)辰數(shù)量。生物數(shù)是初始時(shí)辰數(shù)量。生物數(shù)量向量量向量TmtxtxtxtX)(
2、)()()(21 隨時(shí)間隨時(shí)間 t = 0, t1, t2, t3, t = 0, t1, t2, t3, 變化變化規(guī)律用矩陣規(guī)律用矩陣 1121mmppfffL描畫(huà)。即描畫(huà)。即)()(tXLttX P.H.Leslie1900-19743/14某種動(dòng)物最大年齡為某種動(dòng)物最大年齡為1515歲歲, ,將其分為三個(gè)年齡組:第將其分為三個(gè)年齡組:第一組一組0505歲;第二組歲;第二組610610歲;第三組歲;第三組11151115歲。第歲。第二組在其年齡段平均繁衍二組在其年齡段平均繁衍4 4個(gè)后代個(gè)后代, ,第三組平均繁衍第三組平均繁衍3 3個(gè)后代。第一和第二組五年的存活率分別為個(gè)后代。第一和第二組
3、五年的存活率分別為0.50.5和和0.250.25?,F(xiàn)有三個(gè)年齡組動(dòng)物各。現(xiàn)有三個(gè)年齡組動(dòng)物各10001000,計(jì)算,計(jì)算5 5年后、年后、1010年后、年后、1515年后各年齡組動(dòng)物數(shù)量。年后各年齡組動(dòng)物數(shù)量。 )(3)(2)(1)(kkkkxxxXX(k+1)=L X(k)設(shè)設(shè) t0 = 0, t1 = 5, t2 = 10, t3 = 15. t0 = 0, t1 = 5, t2 = 10, t3 = 15. 各年齡各年齡組動(dòng)物數(shù)量組動(dòng)物數(shù)量x1(k)=x1(tk), x2(k)= x2(tk), x3(k)= x3(tk)x1(k)=x1(tk), x2(k)= x2(tk), x3(
4、k)= x3(tk)4/14x1(0)x2(0)x3(0)x2(1)=0.5x1(0)x3(1)=0.25x2(0)x1(1)=4x2(0)+3x3(0) )1(3)1(2)1(1)(3)(2)(1025. 00005 . 0340nnnnnnxxxxxx )0(3)0(2)0(1xxx)0()1()(XLLXXnnn 5/14實(shí)驗(yàn)義務(wù)實(shí)驗(yàn)義務(wù): :以五年為一時(shí)間段,分析動(dòng)物各年齡組數(shù)量變化規(guī)以五年為一時(shí)間段,分析動(dòng)物各年齡組數(shù)量變化規(guī)律律. .動(dòng)物數(shù)量變化趨勢(shì)是無(wú)限增長(zhǎng)還是趨于滅亡?動(dòng)物數(shù)量變化趨勢(shì)是無(wú)限增長(zhǎng)還是趨于滅亡?3 3* *. .假設(shè)每五年向其它養(yǎng)殖場(chǎng)保送動(dòng)物假設(shè)每五年向其它養(yǎng)殖場(chǎng)
5、保送動(dòng)物C=s1 s2 s3TC=s1 s2 s3T要求要求2020年后本養(yǎng)殖場(chǎng)動(dòng)物不滅絕,年后本養(yǎng)殖場(chǎng)動(dòng)物不滅絕,C C 取多少為好?取多少為好? 現(xiàn)有三個(gè)組的動(dòng)物各現(xiàn)有三個(gè)組的動(dòng)物各1000,1000,計(jì)算第計(jì)算第5 5年、第年、第1010年、第年、第1515年后各個(gè)周齡的動(dòng)物數(shù)量年后各個(gè)周齡的動(dòng)物數(shù)量 開(kāi)場(chǎng)時(shí)辰開(kāi)場(chǎng)時(shí)辰 X(0) = 1000, 1000, 1000T6/14實(shí)驗(yàn)義務(wù)一實(shí)驗(yàn)義務(wù)一:動(dòng)物數(shù)量變化規(guī)律計(jì)算動(dòng)物數(shù)量變化規(guī)律計(jì)算function X=animal(n)L=0 4 3;0.5 0 0;0 0.25 0;X=1000;1000;1000;P=X;for k=1:n X
6、=L*X;P=P,X;endfigure(1),bar(P(1,:)figure(2),bar(P(2,:)figure(3),bar(P(3,:)調(diào)用函數(shù)調(diào)用函數(shù) X=animal(12) X =314754.15 143543.21 16547.127/14L=0 4 3;0.5 0 0;0 0.25 0;P,lamda=eig(L)5 . 11 L 的主特征值的主特征值主特征值特征向量實(shí)驗(yàn)與注記主特征值特征向量實(shí)驗(yàn)與注記p1=P(:,1);d=sum(p1);p=p1/dX0=p*3000P=0.95 0.93 0.230.32 -0.36 -0.590.05 0.07 0.77Lamd
7、a= 1.50 0 0 0 -1.31 0 0 0 -0.19X0= 2160.00 720.00 120.00動(dòng)物數(shù)量按年動(dòng)物數(shù)量按年齡顯示出倒金齡顯示出倒金字塔構(gòu)造字塔構(gòu)造 2160 720 1208/14 025. 00005 . 0340L 主特征值主特征值:三個(gè)線(xiàn)性無(wú)關(guān)特征向量三個(gè)線(xiàn)性無(wú)關(guān)特征向量:321, 5 . 11 332211)0( cccX )(332211)0()( cccLXLXnnn 333222111 nnnccc 111 nc 1111)1( nncX)0(1)1(XX 取取初始時(shí)辰初始時(shí)辰:通項(xiàng)通項(xiàng):11)0( cX )1(1)2(XX 9/14取取 n=3 n
8、=3 2160. 3240. 4860. 2160. 3240. 4860. 72907290 720. 1080. 1620. 720. 1080. 1620. 2430.2430. 120. 180. 270. 120. 180. 270. 405.405.function P=animal(n)L=0 4 3;0.5 0 0;0 0.25 0;X=1000;1000;1000;P=X;for k=1:n X=L*X;P=P,X;endfigure(1),bar(P(1,:)figure(2),bar(P(2,:)figure(3),bar(P(3,:)123402000400060008
9、000123401000200030001234020040060010/14實(shí)驗(yàn)義務(wù)三:每五年平均向市場(chǎng)供應(yīng)動(dòng)物實(shí)驗(yàn)義務(wù)三:每五年平均向市場(chǎng)供應(yīng)動(dòng)物C = s1 s2 s3T 修正數(shù)學(xué)模型修正數(shù)學(xué)模型 X(k+1) = L X(k) C , (k = 0, 1,2,3)X(1) = L X(0) C, X(2) = L X(1) CX(3) = L X(2) C, X(4) = L X(3) CX(2) = L2 X(0) LC CX(3) = L3 X(0) L2C LC CX(4) = L4 X(0) L3C L2C LC CX(4) = L4 X(0) (L3 + L2 + L + I
10、 ) C11/14思索與練習(xí)思索與練習(xí)1.何為矩陣的主特征值?在動(dòng)物養(yǎng)殖問(wèn)題中何為矩陣的主特征值?在動(dòng)物養(yǎng)殖問(wèn)題中,萊斯利萊斯利矩陣的主特征值如何影響動(dòng)物數(shù)量變化?矩陣的主特征值如何影響動(dòng)物數(shù)量變化? 2.萊斯利矩陣反映的是一種準(zhǔn)確變化的規(guī)律萊斯利矩陣反映的是一種準(zhǔn)確變化的規(guī)律,這一數(shù)這一數(shù)學(xué)模型有何缺陷?學(xué)模型有何缺陷?3.動(dòng)物養(yǎng)殖過(guò)程中各年齡組的數(shù)量是整數(shù)動(dòng)物養(yǎng)殖過(guò)程中各年齡組的數(shù)量是整數(shù),而數(shù)學(xué)模而數(shù)學(xué)模型所反映的是實(shí)數(shù)型所反映的是實(shí)數(shù),應(yīng)該怎樣調(diào)整應(yīng)該怎樣調(diào)整? 如何描畫(huà)動(dòng)物不如何描畫(huà)動(dòng)物不滅絕?滅絕?12/14一切切線(xiàn)構(gòu)成直線(xiàn)族一切切線(xiàn)構(gòu)成直線(xiàn)族, ,原來(lái)曲線(xiàn)成為直線(xiàn)族的包絡(luò)。原來(lái)曲
11、線(xiàn)成為直線(xiàn)族的包絡(luò)。直線(xiàn)簇及其包絡(luò)實(shí)驗(yàn)直線(xiàn)簇及其包絡(luò)實(shí)驗(yàn) 當(dāng)?shù)谝幌笙耷€(xiàn)為單減凹曲線(xiàn)時(shí),當(dāng)?shù)谝幌笙耷€(xiàn)為單減凹曲線(xiàn)時(shí),曲線(xiàn)的切線(xiàn)位于曲線(xiàn)下方。曲線(xiàn)的切線(xiàn)位于曲線(xiàn)下方。設(shè)有星形曲線(xiàn)設(shè)有星形曲線(xiàn) 3/23/23/2ayx 參數(shù)方程參數(shù)方程 tax3cos tay3sin 20 t(x,y)處點(diǎn)斜式方程處點(diǎn)斜式方程 曲線(xiàn)的切線(xiàn)斜率曲線(xiàn)的切線(xiàn)斜率ttttttdxdycossinsincoscossin22 )(cossinxXttyY 將參數(shù)方程代入,得將參數(shù)方程代入,得 atYtX sincos13/14X軸上點(diǎn)軸上點(diǎn): (cos t , 0 )Y軸上點(diǎn)軸上點(diǎn): ( 0 , sin t )funct
12、ion starlin(N)if nargin=0,N=20;endt=linspace(0,pi/2,N); %確定參數(shù)值確定參數(shù)值x=cos(t).3; %計(jì)算曲線(xiàn)坐標(biāo)計(jì)算曲線(xiàn)坐標(biāo)y=sin(t).3;O=zeros(1,N);X=cos(t);O; %創(chuàng)建創(chuàng)建X坐標(biāo)矩陣坐標(biāo)矩陣Y=O;sin(t); %創(chuàng)建創(chuàng)建Y坐標(biāo)矩陣坐標(biāo)矩陣figure(1),plot(X,Y,r, x,y,k)figure(2),plot(X,-X,-X,X,Y,Y,-Y,-Y,r)axis off00.5100.5114/14附注 Note 12310123231011122232301122331122331 11222333Page 8(+)(1)PcXccPCCP
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆省吐魯番市2025年小升初數(shù)學(xué)重難點(diǎn)模擬卷含解析
- 商標(biāo)共享合同協(xié)議
- 2025至2031年中國(guó)離子風(fēng)蛇行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 新余學(xué)院《鍵盤(pán)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025-2030年中國(guó)PPP模式行業(yè)發(fā)展規(guī)劃及投資預(yù)測(cè)研究報(bào)告
- 2025至2031年中國(guó)立管檢查口行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 2025-2030年中國(guó)3110kv繼電保護(hù)裝置行業(yè)市場(chǎng)運(yùn)營(yíng)動(dòng)態(tài)調(diào)研與發(fā)展建議咨詢(xún)報(bào)告
- 云計(jì)算數(shù)據(jù)中心架構(gòu)與技術(shù)
- 2024-2025新入職員工安全培訓(xùn)考試試題附答案【培優(yōu)A卷】
- 2024-2025公司安全培訓(xùn)考試試題7A
- 2023屆物理高考二??记爸笇?dǎo)
- 箱涵工程監(jiān)理實(shí)施細(xì)則
- GB/T 39486-2020化學(xué)試劑電感耦合等離子體質(zhì)譜分析方法通則
- GB/T 11085-1989散裝液態(tài)石油產(chǎn)品損耗
- GXH-3011A1便攜式紅外線(xiàn)CO分析儀
- NYT 393-綠色食品 農(nóng)藥使用準(zhǔn)則
- 2022年四川省阿壩州中考數(shù)學(xué)試卷及解析
- 綜采工作面末采安全技術(shù)措施
- 實(shí)驗(yàn)幼兒園大三班一周活動(dòng)計(jì)劃表
- 密封圈定位套零件的機(jī)械加工夾具設(shè)計(jì)說(shuō)明書(shū)
- CKE2500 250t履帶式起重機(jī)
評(píng)論
0/150
提交評(píng)論